第 300 部分:电子视觉显示器要求简介 第 302 部分:电子视觉显示器术语 第 303 部分:电子视觉显示器要求 第 304 部分:电子视觉显示器用户性能测试方法 第 305 部分:电子视觉显示器光学实验室测试方法 第 306 部分:电子视觉显示器现场评估方法 第 307 部分:电子视觉显示器分析与合规性测试方法 第 308 部分:表面传导电子发射显示器 (SED) 第 309 部分:(TR):有机发光二极管 (OLED) 显示器 第 310 部分:(TR):像素缺陷的可见性、美观性和人体工程学 第 333 部分:使用眼镜的立体显示器 第 391 部分:要求、分析与合规性测试方法
每个分子都有自己独特的振动光谱 - 就像指纹一样,可以借助类似激光的红外辐射来确定。产生这种波长可调的强红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子穿过波荡器中的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子——以集中、强烈的光束形式。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
1) 艾哈迈德·A·卡卡什 (Karkash)A .(2024) 金属块体、表面和纳米结构的分子动力学研究 2) Diaz, Leopoldo III (2022) 过渡金属表面的第一性原理研究 3) Alsalmi, Omar (2019) 高温二元 Ti-Al 相图的第一性原理研究 硕士委员会主席 1) Aslan, Ali N. (2023) 氧-碳表面污染下 Ag 和 Au 的计算二次电子发射分析 2) Alsharari, Sami (2023) 具有不同碳覆盖率的 Cu (110) 表面的理论研究 3) Vincent III, Timothy Mark (2021) Si 中的 Cu 和 Ag:难以捉摸的 Cu0 和 *Cu0 缺陷 4) Brown, Madeline (2021) 清洁和氢层镍表面的二次电子发射5)Mulherin,Olivia(2017)AuCd形状记忆合金的弹性和热性能的理论研究
摘要:在统计程序TALYS v1.96和质子中子准粒子随机相近似(pn-QRPA)模型框架内,研究了Mo同位素的中子俘获率和随温度变化的恒星β衰变率。在统计程序TA-LYS v1.96框架内,基于现象学核能级密度模型和γ强度函数,分析了Mo(n,γ)Mo辐射俘获过程的麦克斯韦平均截面(MACS)和中子俘获率。基于模型的MACS计算与现有测量数据相当。在pn-QRPA模型框架内,研究了恒星弱相互作用率对不同密度和温度的敏感性。特别关注了衰变核(Mo)中热填充激发态对电子发射和正电子俘获率的影响。此外,我们比较了中子俘获率和恒星β衰变率,发现无论在低温还是高温下,中子俘获率都高于恒星β衰变率。
电子诱导的电子发射通常用二次电子产额 (SEY) 来量化,有时也称为总电子产额 (TEY)。低 SEY 材料或表面旨在减少航天器和卫星的表面充电 [1,2] 以及减轻粒子加速器中电子云的形成。[3–7] 几十年来,为了满足不断发展的技术需求,人们在元素材料表面和化合物中 [7–17] 深入研究了二次电子产额的一次电子能量依赖性以及发射电子的动能分布。对于许多应用,低于 1 的 SEY 最大值足以避免撞击电子的级联倍增。然而,对于其他解决方案而言,进一步降低 SEY 可能会有所帮助,以抑制可能产生背景噪声或使测量信号恶化的反射、背散射和二次电子,例如在电子收集器中,用于测量超高真空 (UHV) 中的低电子电流或用于基于电离的压力计。[18,19]
电磁辐射是太空中丰富的能源,可为行星际和恒星际任务提供温和而持久的推力。微型激光和太阳能推进平台的早期成功证实了它们在近地和深空探索中的潜力,尽管实际实现可靠的光子设备并非易事。出于对太空探索的兴趣,本简短报告概述了这一新兴领域的最新成就。我们重点介绍了几种通过光子-物质相互作用产生推力的光致机制,例如光子压力和烧蚀、光梯度力、光诱导电子发射等,这些机制可能会对太空推进产生技术影响。最后,我们概述了这些机制在实际应用中面临的一些关键挑战和可能的解决方案,并提出了光子推进领域未来发展的分类和指导原则。
胆固醇 27 和酰胺 28 在凝胶化学中很常见,利用 LMWG 实现必要且有效的合成仍然很困难。随着超分子凝胶化过程的演示,凝胶研究的当前方向 29 是将金属离子与 LMWG 一起引入,以形成多功能超分子金属凝胶。多种金属离子和低分子量有机组分的组合相结合,可生成具有不同自聚集机制和非共价特性的金属同质凝胶,从而导致在科学和技术领域开发出更引人注目和卓越的特性。超分子金属凝胶在材料科学的众多领域有着重要的应用,包括食品工业、化妆品、电子发射、光物理、逻辑门、药物输送、细胞培养、生物矿化、医学诊断、组织工程、光刻、光学活性、能量存储、电荷传输、催化、导电性、执行器、磁性材料、氧化还原响应、化学传感器、电化学和光电器件、纳米科学和纳米电子学等。30 – 49