图1相位,形态,微结构和元素分布信息。(a)Ni-Co 9 S 8 /RGN,Ni-Co 9 S 8,Co 9 S 8 /RGN,NIS /NI 9 S 8 /RGN和RGN材料的XRD模式; (b)Ni-Co 9 S 8 /RGN的SEM图像; (c)Ni-Co 9 S 8 /RGN的HAADF-STEM图像; (d)Ni-Co 9 S 8 /RGN的HRTEM图像和相应的SAED模式(插图); (e)Ni-Co 9 S 8 /RGN的HAADF-STEM图像,相应的反向散射电子图像(F)和Ni,Co,s,c元素的EDS地图。
Axis Q6054 MK II是一款顶级的室内PTZ相机,提供快速,精确的平底/倾斜性能,可在范围内进行广泛的覆盖范围和详细的监视。焦点召回功能在预定义的区域提供了即时的焦点。摄像机配备轴线灯火技术,以确保即使在弱光条件下也可以确保颜色图像。轴线邮轮技术减少了带宽和存储要求。Axis Q6054 MK II提供了冲击检测,视频运动探测,主动网守和电子图像稳定功能,可在具有振动的环境中更平滑的视频。它支持双向音频,音频检测,I/O端口和24 V AC/DC功率。
EPA 为此项行动建立了官方公共档案,档案编号为 A–99–05。官方公共档案是 EPA 档案中心(EPA/DC)EPA West(MC 6102T)的 Air Docket 中可供公众查阅的材料集合,地址为:1301 Constitution Ave., NW., Washington, DC 20004。EPA 档案中心公共阅览室(B102)的开放时间为周一至周五上午 8:30 至下午 4:30,法定节假日除外。阅览室的电话号码为 (202) 566–1744,Air Docket 的电话号码为 (202) 566–1742。可以通过互联网访问 www.epa.gov/eDocket 查看此档案的电子图像,档案编号 A–99–05 的索引为 OAR–2003–0201。与我们的数据可用性通知(2003 年 9 月 8 日发布)相关的材料以及根据该通知收到的公众意见均已放置在 eDocket OAR–2003–0201 中。1
逻辑合成在数字设计流中起着至关重要的作用。它对电路实现的最终结果质量(QOR)具有决定性的影响。但是,现有的多级逻辑优化算法通常采用一系列局部优化步骤采用贪婪的方法。每个步骤将电路分为小块(例如,可行的切割),并分别对单个零件进行增量更改。这些本地优化步骤可能会限制勘探空间,并可能错过重大改进的机会。为了解决限制,本文提出了在逻辑合成中使用电子图像。新的工作流(名为e-Syn)利用良好的电子支柱基础架构有效地执行逻辑重写。它探讨了一套等效的布尔表示,同时允许技术意识到的成本功能更好地支持面向延迟和面积的逻辑合成。在广泛的基准设计上进行的实验表明,与常用的基于AIG的逻辑合成流相比,我们提出的逻辑选择方法达到了更广泛的设计空间。它可以在平均年龄15.29%的延迟延迟延迟延迟延迟,以节省面积为导向的合成的6.42%面积。
材料推动技术发展,例如微电子和纳米技术中的硅基半导体。这些材料虽然本质上是量子的,但它们的宏观特性并不表现出量子世界最引人注目的方面之一:纠缠。因此,半导体中的电子可以在单电子水平上建模。然而,一种新的范式——量子材料——正在出现,在量子计算领域具有潜在的应用潜力。在这些系统中,电子是纠缠的,单电子图像不再是材料特性的准确描述。相反,需要多体、N 电子处理。当前的 QIS 捕获并利用单个原子或离子作为量子比特,即经典比特的量子模拟。由于实验的不完善,需要许多离子才能累积起来代表一个可用的“逻辑”量子比特。捕获这些离子具有挑战性,因此系统既庞大又昂贵。世界上最先进的系统由 IBM 创建,仅捕获 53 个离子。量子材料的一种可能应用是利用物质深处的 N 电子纠缠作为 QIS 应用的资源。材料中的每个纠缠电子都充当量子比特,从而实现更大规模的 QIS。在 Mourigal 实验室博士后 Zhiling Dun 的帮助下,该项目的目标是合成和表征电子自旋可能纠缠的磁性材料。