特此通知所有相关人员,根据电子与通信工程系 2024 年 2 月 8 日举行的第一次学术委员会 (BoS) 的建议,主管部门批准了从学期开始的电子与通信工程技术学士(航空电子学)(B.Tech-ECE(Avionics)) 4 至 4 个学期的课程计划和教学大纲。
摘要令人兴奋的心脏,神经和骨骼肌肉组织的固有复杂性在构建人工对应物方面构成了巨大的挑战,这些对应物与它们的自然生物电气,结构和机械性能非常相似。最近的进步越来越多地揭示了生物电微环境对细胞行为,组织再生和可激发组织的治疗功效的有益影响。本综述旨在揭示电气微环境增强可激发细胞和组织的再生和功能的机制,考虑到来自电活性生物材料的内源性电线以及来自外部电子系统的外源性电刺激。我们探讨了这些电气微环境的协同作用,并结合结构和机械指导,对使用组织工程的可激发组织的再生
课程名称:数学 1(必修,第一学期,7 ECTS) 课程目标:本课程旨在使学生能够将通过本课程获得的知识应用于电气工程和计算机研究专业课程的辅助工具。 学习成果:成功完成本课程后,学生将能够: 1. 了解并设计解决其专业领域中涉及复数运算的各种问题。使用矩阵和行列式,他们能够解决和应用与线性方程组相关的问题。 2. 理解和应用向量概念以及空间解析几何中的其他元素,设计和开发这些问题。 3. 在研究中发现各种电现象的功能连接大小,然后通过微分学描述和检查它们,知道如何找到它们的最大值并通过图形表示整体,注意它们的所有属性。 课程内容。实数和复数。矩阵、行列式和线性系统求解。向量运算和向量的线性组合。两个向量的标量积和它们之间的角度。向量的向量积、标量三重积和向量三重积。向量的线性独立性和向量的基分解。单变量函数、极限及其连续性。序列的极限。级数的定义及其收敛性。级数收敛的准则。函数的导数及其应用。教学方法:45 小时讲座 + 45 小时听课练习。约 120 小时个人学习和练习。评分制度:家庭作业 10%,期中考试 30%,期末考试 60% 文学:
摘要 人脑是自然界中终极的计算机器。创建能够模拟大脑工作方式并与大脑通信的类脑设备对于制造高效计算电路、监测早期疾病的发生以及跨脑机接口传输信息至关重要。在这种情况下,离子-电子信号的同时传导将特别令人感兴趣,因为离子传递器是人脑中信息传递的手段,而传统电子设备则利用电子或空穴。从这个角度来看,我们提出强关联氧化物(主要集中在钙钛矿镍酸盐)作为此目的的潜在候选材料。可逆地接受小离子并将离子信号转换为电信号的能力使钙钛矿镍酸盐成为神经形态计算和生物电应用的有力候选材料。我们将讨论钙钛矿镍酸盐中离子掺杂和电阻率调制之间相互作用的机制。我们还将介绍在神经形态计算和脑机接口应用中使用钙钛矿镍酸盐的案例研究。最后,我们指出了该领域的挑战并提出了我们的观点。我们希望钙钛矿镍酸盐中强电子相关性的利用将为未来的计算设备和脑机接口提供令人兴奋的新机会。
完整作者列表: 尼古拉耶夫,弗拉基米尔;国立科技大学莫斯科国立合金学院,电子学 波利亚科夫,亚历山大;国立科技大学莫斯科国立合金学院,电子学 斯捷潘诺夫,谢尔盖;国立科技大学莫斯科国立合金学院,半导体电子学与半导体物理学;约飞研究所,异形晶体物理实验室;完美晶体有限责任公司 佩奇尼科夫,阿列克谢;国立科技大学莫斯科国立合金学院,半导体电子学与半导体物理学;约飞研究所,异形晶体物理实验室;完美晶体有限责任公司 亚基莫夫,尤金;国立科技大学莫斯科国立合金学院,半导体电子学与半导体物理学;俄罗斯科学院,微电子技术与高纯度材料研究所 切尔尼赫,阿列克谢;国立科技大学莫斯科国立合金学院,半导体电子学与半导体物理学 瓦西列夫,安东;国立科技大学莫斯科国立合金学院,半导体电子学与半导体物理学 谢梅罗夫,伊万;国立科技研究型大学莫斯科国立合金学院,半导体电子学与半导体物理学 Kochkova,Anastasia;莫斯科国立合金学院,电子学 Guzilova,Lyubov Guzilova;Perfect Crystals LLC Konovalev,Mikhail;莫斯科国立合金学院,电子学 Pearton,Stephen;佛罗里达大学,材料科学与工程
工学学士 / 理学学士 / 理学硕士 电子工程 电子与通信工程 电子与电气通信工程 物理学(电子学)与工学硕士 / 理学硕士 电子与通信工程 电子与电气通信工程 电子与电信工程 电子与仪器工程 超大规模集成电路设计 微波电子学 嵌入式系统 微电子学 纳米电子学 纳米技术 电力电子学 微波工程 电子产品设计与技术 生物医学工程 机电一体化 或其他同等学历
在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
SN 课程名称 课程代码 学分 总学分 1 信号、系统与网络 EE200A 3-1-0- 0 11 2 电子学概论 ESC201A 3-1-3-0 14 4 电子学概论 ESC201T 3-1-0-0 11 5 电气工程概论 ESO203A 3-1-2-0 13 7 模拟电子学 EE210A 3-1-0-0 11 8 控制系统分析 EE250A 3-1-0-0 11 9 数字信号处理 EE301A 3-0-0-0 9 10 半导体器件 EE311A 3-0-0-0 9 11 通信原理 EE 320A 3-1-0- 0 11 12 通信系统 EE321A 3-0-0-0 9 13 电力系统 EE330A 3-1-0- 0 11 14 电磁理论 EE340A 3-1-0-0 11 15 电力电子学 EE360A 3-0-0-0 9 16 数字电子学 EE370 A 3-1-0- 0 11 17 电气工程实验室 I EE380A 0-2-6- 0 12 18 电气工程实验室 -II EE381A 0-3-6-0
(a)电子科学/电子学/应用电子学/电子与通信/工程物理与仪器/物理学(电子学为其中一门学科)/无线电物理学/无线电物理与电子学硕士学位获得至少 60%的总分,或(b)电子、仪器仪表与控制工程/电子与通信工程/电子与控制系统/电子与信息系统/电子与仪器仪表/电子工程/电子科学与工程/电子技术/仪器仪表/仪器仪表与电子工程/仪器仪表与控制系统/仪器仪表技术工学学士/工学学士学位获得至少 60%的总分