摘要:表面等离子体,连续和累积的电子振动构成了金属介电界面,在汇总纳米结构上的光界和能量方面起着关键作用。这种结论利用了其空间效果的内在次波长性质,显着增强了光 - 代言的相互作用。金属,半导体和2D材料在各种波长处表现出等离子体共振,从紫外线(UV)到远红外,由它们的独特特性和结构决定。表面等离子体为各种光 - 物质相互作用机制提供了一个平台,并利用了等离子结构内电磁场的高度增强。通过理论,计算和实验研究证实了这种增强。在这项全面的综述中,我们深入研究了基于金属和超材料的传感器的等离子体增强过程,考虑了诸如几何影响,谐振波长,化学特性和计算方法之类的因素。我们的探索扩展到实用应用,包括基于局部的表面等离子体共振(LSPR)的平面波导,基于聚合物的生物芯片传感器和基于LSPR的纤维传感器。最终,我们旨在为开发下一代,高性能等离子技术设备提供见解和指南。
关于广泛接受的BCS超导理论的挑战可能是由于对自由移动电子和金属键的海洋的误解。根据这些概念,电阻大概是由电子振动和碰撞引起的。隐含地假设该模型,BCS理论表明,库珀对耦合电子可以最大程度地减少振动和电阻。但是,这提出了一个问题:如果离域电子负责将金属分子固定在一起,那么当电子在电流中移动时,金属结构如何保持稳定?放弃了这些传统模型,一种替代理论介绍了导体内等电气隧道的概念。在离间分子紧密的分子之间形成,这些隧道使电子能够以相同的能级跨分子移动,从而导致电流。代替导体中的自由电子,通常局限于各自分子内的轨道,低于访问这些导电隧道所需的能级。将电子抬高到隧道中需要能量,这表现为电阻。可以通过压缩分子间距来降低导体的电阻,从而最大程度地减少隧道和价轨道之间的间隙。随着额外的压力,该间隙可以进一步降低至零,从而导致隧道与价轨道相交。因此,电子可以自然进入隧道而无需额外的能量,从而导致零电阻(耐心)。该理论提供了超导现象的全面解释,包括Messner效应,临界电流密度,临界磁场,电阻率与压力之间的反比关系,以及为什么在高压下实现许多高温超导体。使用该理论,合成室温超导体的关键在于压缩分子距离。最佳方法可能涉及工程分子结构以利用特定分子之间的吸引力,从而最大程度地减少间隙。
在感应介质的折射率中。5通过金属/介电板的界面通过金属/介电板的界面诱导金属的自由电子振动性,而这反过来,这又,它因能量传递而沿界面开始旋转,从而使Indistion Em Wavis携带以免费的电子表面携带,因此,该金属的自由电子均促进了金属的自由电子,从而诱导了金属的自由电子,从而诱导金属的自由电子,从而诱导金属的自由电子,从而诱导金属的自由电子,从而使Indistion Em the Em em the Emalons携带的是金属的携带。6沿金属和电介质之间界面的自由电子的集体传播称为表面等离子体波(SPWS)。7 SPWS和Evanescent Wave之间的耦合是由于相匹配而导致的,这是实现SPR条件的必要条件。8,这种情况的实现导致结构6 - 8的重复响应的谐振倾角,因为表面波的激发是直接通过3D梁的激发而引起的。有不同的激发技术,例如Kretschmannconguration,其中,棱镜用于表面等离子体的激发,ottoconguration,ber耦合,以及在全球研究人员使用的耦合方案。9在所有这些耦合方案中,Kretschmanncon基于guration基于辅助的耦合方案是最受欢迎的耦合方案,是通过在TM极极化的入射波中通过TM极极化的入射波涂上(AU)和银色(AG)的新型金属(例如(AU)和银色(Ag)的新型金属(例如(AU)和银色(Ag)),通过涂层新型金属(例如(AU)和银色(Ag),来激发evaneScent波。10黄金通常是理想的选择,因为它的能力
关于广泛接受的BCS超导理论的挑战可能是由于对自由移动电子和金属键的海洋的误解。基于这些概念,假定电阻是由导体中的电子振动和碰撞引起的。隐含地授予了该模型,BCS理论表明,库珀对耦合电子可以最大程度地减少其振动和抗性,从而导致超导性。但是,如果将电子电子负责将分子固定在金属键中,那么当电子在电流中移动时,金属结构如何保持稳定?这些模型的主要挑战是压力对电阻率和超导率的负面影响。放弃了这些模型,替代理论介绍了导体内等电式隧道的概念。在离间分子紧密的分子之间形成,这些隧道使电子能够以相同的能级跨分子移动,从而导致电流。电子,而不是自由移动,通常局限于其各自分子内的轨道,低于这些导电隧道的能级。将电子升入隧道需要能量,这表现为电阻。可以通过压缩分子间距来降低导体的电阻,从而最大程度地减少隧道和价轨道之间的间隙。随着额外的压力,该间隙可以进一步降低至零,从而导致隧道与价轨道重叠。因此,电子自然地驻留在隧道中,而无需向隧道提升能量,从而导致零电阻(零电导率)。该理论全面地解释了观察到的超导现象,包括Meissner效应,临界电流密度,临界磁场,电阻率与压力之间的逆关系以及为什么在高压下实现许多高温超导体。根据该理论,压缩分子距离是合成室温超导体的关键。最佳方法涉及工程分子结构以利用特定分子之间的吸引力,从而最大程度地减少了间隙。
一类DNA折叠/结构统称为G-四链体(G4),通常在鸟嘌呤富基因组的区域中形成。G4 DNA被认为在基因转录和端粒介导的端粒维持中具有功能作用,因此是药物的靶标。导致鸟嘌呤四局部堆叠的分子相互作用的细节并不理解,这限制了G4序列的可药用性的合理方法。为了进一步探索这些相互作用,我们采用了电子振动 - 二维红外线(EVV 2DIR)光谱法,以测量由MyC2345核苷酸序列形成的平行链链G- Qu-Qu-Qu-Qu-Qubadruplex DNA的扩展振动偶联光谱。我们还跟踪了与G4折叠相关的结构变化,该变化是K + -ION浓度的函数,以产生进一步的见解。为了对折叠过程在振动耦合特性方面产生的结构元素进行分类,我们使用了使用密度功能理论的量子化学计算。这导致了与给定结构相关的耦合光谱的预测,这些耦合光谱与从EVV 2 -DIR光谱获得的实验耦合数据进行了比较。总体而言,在折叠过程中对102个耦合峰进行了实验鉴定并遵循。注意到了许多现象,并与折叠形式的形成相关。这包括频率变化,交叉强度的变化以及新耦合峰的出现。可以将新峰分配给复合物中特定化学基团之间的耦合,我们使用2DIR数据在我们的实验条件下为这种特定类型的G4提出了折叠序列。总体而言,实验2DIR数据和DFT计算的组合表明,在添加钾离子之前,在初始DNA中可能已经存在鸟嘌呤四重奏,但是这些四重奏是未储存的,直到添加钾离子为止,在这一点上形成了完整的G4结构。