课程描述 本课程专为具有材料科学与工程、物理学、地球科学、化学、生命科学或相关领域背景的学生而设计。本课程专门为以下学生设计:a) 学习 SEM 成像、衍射和光谱学的基本原理;b) 了解电子-样本相互作用、信号产生和检测;c) 正确解释各种类型的图像和相关的 X 射线光谱和衍射图案;d) 掌握适当的技能来解决实际材料的各种图像和微分析问题。本课程的学习成果包括 i) 理解关键概念和基本原理,ii) 正确选择适当的电子束参数(例如电压、电流、探针尺寸和焦深)以研究不同类型的材料(例如导体、半导体、绝缘体或聚合物),以及 iii) 了解如何消除图像、光谱和衍射图案中的伪影。希望学生专注于解决问题的技能,并熟练地利用现代 SEM 来解决具有挑战性的材料研究问题和产品开发问题。课程内容 本课程首先介绍电子束-样品相互作用,以及此类相互作用如何产生不同类型的有用信号,这些信号携带样品特定信息(形态、结构、元素分布等)。然后将广泛讨论影响各种类型电子探针形成的参数(例如高分辨率成像与微分析)。接下来将讨论不同类型的电子和X射线探测器以及如何使用这些探测器形成可解释的图像和/或光谱。在学期的第一部分,重点是理解探针形成和图像解释的基本原理,重点是如何为特定类型的样品选择合适的电子光学参数。在学期的第二部分,我们将讨论通过X射线对异质样品进行定性和定量成分分析、通过电子背散射衍射(EBSD)图案获取晶体材料的结构信息,以及如何使用低电压(低至数十伏)或可变压力SEM对非导电或湿样品进行成像。将讨论双光束 FIB-SEM(电子和聚焦离子束)显微镜和现代 SEM 中的原子分辨率成像。讲座时间:周一/周三下午 12:00-1:15;地点:CVAC 333(和 ASU Online);讲师:Jingyue (Jimmy) Liu 博士(https://isearch.asu.edu/profile/1816322);办公室:PSF 432A;电子邮件:jliu152@asu.edu。
339 DLA 表格 339,用于向服务 ESA 的 A1202 申请工程支持表格参考,将措辞插入招标的 POT 中,警告潜在投标人该部件具有可疑的铸造或锻造部件 AFCAT 航空锻造和铸造援助团队 - CAST-IT 和 FORGE-IT 团队的成员,为 DSCR AFS 美国铸造学会 AICS 自动点火燃烧合成 ALT 行政前置时间提供直接支持 - 从要求之日起到合同授予的天数。另请参阅 PLT AMC 美国金属铸造联盟 ASC 航空供应链 ATI 先进技术国际 BEKP 背散射电子 Kukuchi 图案 BSM 业务系统现代化 - DLA 采购系统,也称为 EBS CAST-IT AMC 应用工程师团队 CIDR 提高国防战备的铸件 CIR 提高战备的铸件 CMC 陶瓷基复合材料 CPT 临界点蚀温度 CRM 客户关系管理数据库 CSR 战备铸造解决方案 DCMA 国防合同管理局 DIBBS DLA 互联网投标委员会系统,DLA 使用的基于 Web 的招标和投标系统 DLA 国防后勤局 DMD 直接金属沉积(用于短期工具制造) DMS 制造来源减少 DMSMS 制造来源减少和材料短缺 DoD 国防部 DORRA DLA 运筹学与资源分析 DSCC 哥伦布国防供应中心(主要是陆地和海上系统) DSCP 费城国防供应中心(食品、服装、医疗设备和建筑用品) DSCR 国防里士满供应中心(主要是航空系统) EBS 电子商务系统 - DLA 采购系统,也称为 BSM eMall 基于互联网的电子商城,允许军事客户和其他授权政府客户搜索和订购物品 EMPA 电子探针微观分析 ESA 工程服务活动 - 武器系统项目办公室的工程功能。DLA 必须请求 ESA 的工程师支持解决零件技术问题 FDM 熔融沉积成型 - 一种快速成型方法 ForCasD 航空零件锻件和铸造数据库 HIP 热等静压 - 改善材料性能的铸件后处理 ICON 集成铸造订单网络 ICP 库存控制点(DSCR 或 DSCC) ICT 创新铸造技术 IMC 金属间基复合材料 IPG1 库存优先级组 1(高水平积压订单) IPT 集成流程团队 MetaL FACT 海陆锻造和铸造援助团队 - CAST-IT 和 FORGE-IT 团队的成员,为 DSCC 提供直接支持 MDWL 维护数据工作量(产品专家在采购前审查数据完整性和正确性的活动) MMC 金属基复合材料 MRL 制造准备水平
痕量元素签名的映射是地球科学和材料科学中扩展的工具,它允许研究实心材料以及可能不会被主要元素捕获的过程。在过去十年中,激光消融中的开发能力耦合质量 - 光谱法(LA-ICP-MS)功能现在可以实现原位元素映射的必要空间分辨率。用LA-ICP-MS获得二维,完全定量和地质有意义的数据仍然是一项艰巨的任务,并且一个特殊的障碍是对不均匀阶段的校准,例如化学分区的矿物质。这项工作提出了一种新型的方法,用于采用LA-ICP-QUAD Rupole MS(LA-ICP-QMS)的多元素映射的数据减少和图像生成方法,该方法在免费和开源软件Xmaptools中实现。提出了三个地质AP平原,以说明程序的好处。在不同的空间分辨率下,多次映射了来自Eclogitic样品(Lato Hills,Togo)和斜长石,K-Feldspar,k-feldspar的石榴石,k-feldspar,Biotite(El Oro Complex,Ecuador),以测试校准质量和化学检测能力。金红石,并在单个晶粒内显示了510至550℃的温度范围为510至550℃。通过与电子探针微分析(EPMA)获得的分区主要和次要元素图(石榴石,斜长石)和ti-in-biotite地热图图(EPMA)进行比较,通过与分区的主要和次要元素图(石榴石,斜长石)和Ti-In-Biotite地热度图(EPMA)进行比较来验证LA-ICP-MS方法的准确性。此外,此类地图也被记录得更快。使用LA-ICP-QM实现高达5μm的空间分辨率,这与报告的LA-ICP飞行器时间质谱法(LA-ICP-TOFMS)的分辨率相似,尽管以明显较低的习得速度。较低空间分辨率的地图提供了更好的化学检测能力,如较低的每像素检测极限(LOD)地图计算所证明的。像素分配策略和仪器条件也对地图质量有直接影响。我们建议将地图插入到方形像素上,其中像素由多个扫描组成以获得改进的检测能力。使用模拟LA-ICP-MS映射的基准测试表明,斑点大小以及扫描方向可以根据化学模式的特征大小而导致组成的变化。通过在REE中可见的石榴石中映射薄薄的环形环,并且这种综合偏移可以对例如扩散建模产生重大影响。新的软件解决方案提供了具有95%置信度的单像素LOD过滤的LA-ICP-MS图的多标准和可变组成校准,从而使用户可以同时量化主要和痕量元件的不均匀材料,并提高精度。