获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 - 电动机是电子推进系统的核心组成部分之一,在该行业中起着至关重要的作用。电动机的最佳设计提出了一个复杂的非线性问题,通常会挑战传统方法,以在准确性和效率之间取得平衡。实现准确的分析和整体优化通常需要大量的计算要求,尤其是在与大型个人打交道时。结果,研究人员开始探索数据驱动的替代模型来解决这一困境的利用。本评论论文着重于研究用于构建数据驱动的替代模型的领先技术,以协助和促进电动机的设计优化过程。这些技术包括统计模型,机器学习模型,深度学习模型和其他基于人工智能的技术。本文对基本原则进行了全面的调查,并提供了利用这些不同模型的研究的详细示例。此外,这些模型的性能和潜力都以评论为强调,从而阐明了它们各自的优势和局限性。此外,讨论了在此主题下提出的研究挑战,并有望在此主题下进行改进的途径。索引术语 - 手工智能,数据驱动的模型,深度学习,电动机,机器学习,优化,替代模型。