探索大脑活动如何转化为视觉感知,为生物视觉系统的世界代表提供了宝贵的视觉感。最近使用功能性磁共振成像(fMRI)或磁脑摄影(MEG)获得的大脑信号实现了有效的图像分类和高质量的重构。但是,这些技术的成本和批量妨碍了它们的实际应用。相比之下,电子摄影(EEG)提出了诸如易用性,可负担性,高时间分辨率和非侵入性操作等优点,但由于缺乏全面的数据集,在相关研究中仍未充分利用。为了填补这一空白,我们介绍了EEG-IMAGENET,这是一个新颖的EEG数据集,其中包含来自16名参与者的录音,这些录音是暴露于Imagenet数据集中的4000张图像。与现有基准相比,此数据集提供的五倍对脑电图对数的数量是五倍。eeg-imagenet包括带有不同水平的粒度标记的图像刺激,包含40张带有粗标签的图像和40个带有精美标签的图像。我们基于此数据集建立了对象分类和图像重建的基准。使用几种常用模型的实验表明,表现最佳的模型可以通过约60%的准确性实现对象分类,并具有三向识别的图像重建约为64%。这些发现突出了数据集增强基于EEG的Vi-Sual Brain-Computer界面的潜力,加深了我们对生物系统中视觉感知的理解,并提出了有望改善机器视觉模型的有希望的应用。
摘要:对眼动和视觉状态的歧视是研究的一流领域,迫切需要非手动的基于EEG的轮椅控制和导航系统。本文提出了一种新型系统,该系统利用脑部计算机界面(BCI)来捕获人类受试者的电子摄影(EEG)信号,而眼睛运动并随后通过应用随机森林(RF)分类算法将其分为六个类别。rf是一种合奏学习方法,它构建了一系列决策树,每棵树都会在其中进行类预测,而类别预测数量最多的类成为模型的预测。根据受试者眼睛的位置定义了拟议的随机森林脑 - 计算机界面(RF-BCI)的类别:开放,闭合,左,左,右,向上和向下定义。RF-BCI的目的应用作基于EEG的控制系统,用于驱动机电轮椅(康复设备)。已使用包含来自10名不同患者的219个记录的数据集对所提出的方法进行了测试。BCI实施了EPOC Flex头盖系统,其中包括32个盐毡传感器,用于捕获受试者的EEG信号。每个传感器每秒捕获了四个不同的脑波(Delta,Theta,Alpha和Beta)。然后,将这些信号分为4秒的窗户,每条记录512个样品,并为每个EEG节奏提取频带能量。实验结果表明,与获得6级分类的其他方法相比,RF算法的表现优于其他方法和高度准确性(85.39%)。将所提出的系统与幼稚的贝叶斯,贝叶斯网络,K-Nearest邻居(K-NN),多层感知器(MLP),支持向量机(SVM),J48-C4.5决策树和袋装分类算法进行了比较。此方法利用了从Epoc Epoc Flex可穿戴式录制设备中获得的高空间信息,并成功检查了该设备用于BCI轮椅技术的潜力。