摘要:采用异种金属丝电子束增材制造技术在不锈钢基体上混合 5、10 和 15 vol.% Ti-Al-Mo-ZV 钛合金和 CuAl9Mn2 青铜,研究了制备的合金的微观结构、相和力学性能。结果表明,含 5 vol.% 钛合金的合金形成了不同的微观结构,含 10 和 15 vol.% 钛合金的合金也形成了不同的微观结构。第一种合金的特征是结构成分为固溶体、共晶金属间化合物 TiCu 2 Al 和粗大 γ 1 -Al 4 Cu 9 。它具有增强的强度并在滑动试验中表现出稳定的氧化磨损。另外两种合金还含有由于 γ 1 -Al 4 Cu 9 热分解而出现的大花状 Ti(Cu,Al) 2 树枝状晶粒。这种结构转变导致复合材料的灾难性脆化和磨损机制从氧化变为磨料。
用电子显微镜揭示固体电解质(SES)的局部结构对于对固态电池(SSB)性能的基本了解至关重要。但是,如果未完全了解样品与电子束的相互作用,SSB中的固有结构信息可能会误导。在这项工作中,我们系统地研究了电子束对不同成像条件下掺杂的Al掺杂锂含氧酸锂(LLZO)的影响。li金属直接生长在LLZO的清洁表面上。发现所获得的LI金属生长动力学和形态受到温度,加速电压和电子束强度的严重影响。我们证明锂的生长是由于电子束发射下的正充电效应激活的LLZO界限。我们的结果加深了对电子束对SES的影响的理解,并为电池材料使用电子显微镜提供了指导。
清洁产品最终进入废水处理厂的流出物(Tanabe 和 Kawata 2008)。由于它不易被生物降解、吸附或被传统氧化剂氧化,因此很难处理(Otto 和 Nagaraja 2007)。高级氧化工艺(AOP)通常用于去除 1,4-二氧六环(Otto 和 Nagaraja 2007;McElroy 等人 2019)。在这些过程中,会原位生成强氧化羟基自由基(·OH)来降解污染物。这些技术包括紫外高级氧化(UVAOP),其中紫外光用于将过氧化氢(H 2 O 2 )光解为·OH。同样,紫外氯 AOP 通过光解游离氯生成·OH。臭氧 (O3) 可用作水和废水处理中的氧化剂和消毒剂,通过其自催化分解和与有机物的反应生成·OH,而有机物也可以被 H2O2 催化 (von Sonntag & von Gunten 2012;Stefan 2018)。在这些过程中,通常需要大量的化学药剂。虽然对 AOP 在废水废水中去除 1,4-二氧六环的研究有限,但臭氧通常被认为是废水废水中最好的 AOP。这是因为高含量的溶解有机物可以清除羟基自由基,而且紫外线的透射率低 (Katsoyiannis 等人 2011;Lee 等人 2016;Sgroi 等人 2021)。然而,如果存在溴化物 (Br),臭氧 (和 UV-Cl 2 ) 可以形成溴酸盐,这是一种受监管的消毒副产物。电子束处理使用加速电子通过水的辐射分解产生大量的氧化和还原自由基,如公式 (1) 所示 ( Cooper 等人 1992 年; Wang 等人 2016 年):
在小小的不良方向引起的2D材料中有序的中尺度结构允许探索各种各样的电子,铁电和量子现象。到目前为止,唯一诱导这种周期性排序的机制是通过层之间的机械旋转,而所得的Moire模式的周期性与扭角直接相关。在这里,我们报告了通过电子束引起的多层含硫的金属磷酸元素的MNPS 3的介观周期模式出现的根本不同的机制。在周期性的六角形图案的光束下形成,这些图案具有多个特征长度尺度,成核和相之间的跃迁以及局部动力学。
主要应用 • 通过 DLW 和 2PP 进行快速非接触式原型制作 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
本研究系统地分析和优化了纯铜电子束熔炼工艺。结果表明,为了可靠制造,应优化预热温度以避免孔隙率和部件变形。电子束应完全聚焦,以防止收缩空隙(与负散焦相关)和材料飞溅(与正散焦相关)。较低的网格间距(例如 100µm)可使表面更光滑,从而提高密度可靠性,而较高的网格间距可达到更长的悬垂。还采用了合适的起始轮廓策略来减轻边界孔隙率、降低侧面粗糙度并提高几何精度。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
依靠双光子过程来实现高分辨率,因此需要在写入焦点处具有高激光强度。因此,DLW 需要材料具有高光学透明度。这排除了大多数有机半导体的 DLW,因为它们由于电荷传输 p 电子系统而固有地带有颜色。相反,电子束光刻 (EBL) 的高分辨率为光处理的微型设备提供了机会。当用电子照射时,有机薄膜会交联并发生局部溶解度的变化。9,10 Persson 等人用 EBL 构造聚(3-辛基噻吩),并用氯化铁 (III) 掺杂所得结构。11 Hikmet 等人图案化聚(对苯乙烯基)衍生物 (PPV) 用于多色有机发光二极管 (OLED)。9 在
蚀刻设置 - up。尖端可以用作纯发射器作为纯发射器或在氧化物添加氧化涂层时以热效率/ Schottky模式操作。超出尖端的其他应用(尖端直径<100 nm)包括用作STM探针或纳米流动器。可以使用电流 - 电压特性,通过发射模式观察,通过测量液压和电子束的稳定性来分析隧道尖端性能。可以在我们的FI ELD发射显微镜中进行原位进行无涂层尖端的激活和Thermal-Fi ELD发射器(或Schottky发射器)的测试。A.Knápek等。 : - “ STM尖端电化学制备和超偏用发射阴极的可编程设置”,微电动工程学,2017年,173:42-47 A.Knápek等。 : - “聚合物石墨铅笔作为经典导电SPM探针的便宜替代品。”纳米材料,2019,9.12:1756。 A.Knápek等。 : - “常规SEM中聚焦电子束的波动。”超显镜,2019,204:49-54。A.Knápek等。: - “ STM尖端电化学制备和超偏用发射阴极的可编程设置”,微电动工程学,2017年,173:42-47 A.Knápek等。: - “聚合物石墨铅笔作为经典导电SPM探针的便宜替代品。”纳米材料,2019,9.12:1756。A.Knápek等。 : - “常规SEM中聚焦电子束的波动。”超显镜,2019,204:49-54。A.Knápek等。: - “常规SEM中聚焦电子束的波动。”超显镜,2019,204:49-54。
摘要:电子束定向能量沉积(EB-DED)是一种很有前途的制备大尺寸、完全致密和近净成形金属部件的制造工艺。然而,对于钛合金的 EB-DED 工艺了解有限。在本研究中,通过 EB-DED 制备了近 α 高温钛合金 Ti60(Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si)。研究了制备的合金的化学成分、微观结构、拉伸性能(室温和 600 ◦ C)和蠕变行为,并将其与传统锻造层状和双峰对应物进行了比较。结果表明,Al 和 Sn 的平均蒸发损失分别为 10.28% 和 5.01%。成品合金的微观结构以粗柱状晶粒、层状 α 和在 α / β 界面处析出的椭圆硅化物为特征。在拉伸性能方面,无论是在室温还是在 600 ◦ C 下,垂直试样的强度都低于水平试样,但延展性却高于水平试样。此外,在 600 ◦ C 和 150 MPa 条件下测量的 EB-DED Ti60 合金在 100 小时的拉伸蠕变应变在原有和沉积后的 STA 条件下小于 0.15%,符合变形 Ti60 合金的标准要求。EB-DED Ti60 合金的抗蠕变性能优于其变形双峰合金。
摘要 电子束粉末床熔合制造部件是一种复杂的增材制造工艺,在航空航天和许多工业过程中具有广泛的优势。它降低了成本,并且对粉末粒度有更大的要求。与激光粉末床熔合工艺相比,这具有更高的质量沉积速率,从而缩短了生产时间。粉末床制造工艺通常会导致沿构建方向形成柱状晶粒结构,从而产生具有各向异性的物理和机械性能的组件。这是限制该技术应用的主要问题。为了促进等轴晶粒的形成,以及细化柱状形态和消除各向异性,需要考虑工艺条件和孕育剂或异质成核位点的存在的作用。在本研究中,通过添加氮化钛孕育剂,利用熔化策略和可变工艺参数促进铁素体不锈钢中柱状晶粒向等轴晶粒的转变。我们发现,热梯度 (G) 与凝固速率 (R) 之比 (G/R 比) 控制着晶粒形态和纹理:低 G/R 比已被证明可以促进等轴晶粒的形成。研究了这种转变的工艺条件。在 Freemelt One 机器中打印单线轨迹后对样品进行分析,然后借助光学显微镜进行研究,以确定导致柱状晶粒成功转变为等轴晶粒的机器参数组合。研究得出结论,在低热梯度、高扫描速度和低面积能量的条件下,等轴晶粒的比例有所增加。最终,需要进一步研究以确定促进铁素体不锈钢从柱状晶粒转变为等轴晶粒的确切工艺参数。未来的研究人员可以使用这项研究的结果来创建这种钢种的凝固图,并帮助行业定制铁素体不锈钢中的特定纹理,以实现所需的微观结构和机械性能。关键词:增材制造、E-PBM、孕育、工艺参数、TiN、CET