尘埃危害被认为是未来月球勘探的技术挑战之一。在我们过去的工作中,通过电子束从各种表面清除灰尘颗粒引入了一种新的粉尘缓解技术。这项技术是基于修补电荷模型开发的,该模型表明,电子束在灰尘颗粒之间的微腔内的电子束诱导的二次电子的发射和重新吸收会导致灰尘颗粒上的足够大电荷,从而导致由于强力排斥力而导致其从表面释放。在本文中,通过将样品相对于梁旋转,通过在灰尘覆盖的样品表面上的光束入射角改变了该技术的有效性。由于微腔的随机排列,将会以各种入射角将其暴露于光束,从而导致表面上更多的灰尘释放。对三个样本进行了清洁性能:玻璃,太空服和光伏(PV)面板。月球模拟物(直径<25μm)沉积在样品表面上,以使样品的初始清洁度为0%(全灰尘覆盖率)和40%。除了用固定的光束角度达到的清洁度外,还显示出梁入射角的整体表面清洁度增加了10-20%。玻璃和太空服样品的最终清洁度达到83 - 92%。涂有MGF 2的PV面板显示出对灰尘的更粘性,最大清洁度为50 - 63%。
本研究探讨了辐射束能量水平和角度对癌症治疗期间对邻近健康组织和肿瘤的剂量的影响。由于电子束由于其浅渗透深度而最适合浅表肿瘤,但线性加速器产生的光子束对于深座的肿瘤有用。辐射剂量在0°和60°的不同角度以不同的角度和15 mV光子束进行测量,并在0°和15°处使用6 MeV,12 MeV和15 MeV电子束。研究结果表明,在光子治疗中,较大的角度和较高的能量在不同位置产生较高的剂量。电子治疗中的能量水平对剂量分布的影响比角度更大。我们的线性回归模型分析发现,光子治疗中的能级角度和剂量测量与高R 2分数密切相关(高于0.8)。与电子疗法观察到了实质性和不一致的相关性。尽管有这些变化,但两种治疗方法的各种剂量测量之间仍存在正相关。这些结果强调了选择直角和能量水平以最大化治疗功效并最大程度地减少对健康组织的伤害的重要性。通过将我们的结果与确保安全性和有效性的国际标准进行比较,支持在临床环境中使用这些治疗方案。
20 世纪 70 年代和 80 年代是使用主动电子束实验探索日光层和天体物理环境中发生的一些基本物理过程的鼎盛时期。电子束实验用于研究航天器充电和航天器-等离子体耦合、束-等离子体相互作用物理、磁反弹和漂移物理、极光物理、波的产生以及军事应用。虽然这些实验取得了巨大的成功,但它们也受到当时可用技术的限制。空间仪器、数据收集和加速器技术的新进展使使用电子束在太空中进行革命性的新一代主动实验成为可能。在本文中,我们讨论了这样一个实验,即束等离子体相互作用实验 (Beam PIE),这是一项探空火箭实验,旨在 (a) 推进基于高电子迁移率晶体管的射频 (RF) 线性加速器电子技术在空间应用方面的发展,以及 (b) 研究调制电子束产生的哨声和 X 模式波。
蚀刻设置 - up。尖端可以用作纯发射器作为纯发射器或在氧化物添加氧化涂层时以热效率/ Schottky模式操作。超出尖端的其他应用(尖端直径<100 nm)包括用作STM探针或纳米流动器。可以使用电流 - 电压特性,通过发射模式观察,通过测量液压和电子束的稳定性来分析隧道尖端性能。可以在我们的FI ELD发射显微镜中进行原位进行无涂层尖端的激活和Thermal-Fi ELD发射器(或Schottky发射器)的测试。A.Knápek等。 : - “ STM尖端电化学制备和超偏用发射阴极的可编程设置”,微电动工程学,2017年,173:42-47 A.Knápek等。 : - “聚合物石墨铅笔作为经典导电SPM探针的便宜替代品。”纳米材料,2019,9.12:1756。 A.Knápek等。 : - “常规SEM中聚焦电子束的波动。”超显镜,2019,204:49-54。A.Knápek等。: - “ STM尖端电化学制备和超偏用发射阴极的可编程设置”,微电动工程学,2017年,173:42-47 A.Knápek等。: - “聚合物石墨铅笔作为经典导电SPM探针的便宜替代品。”纳米材料,2019,9.12:1756。A.Knápek等。 : - “常规SEM中聚焦电子束的波动。”超显镜,2019,204:49-54。A.Knápek等。: - “常规SEM中聚焦电子束的波动。”超显镜,2019,204:49-54。
金属光(金属光(金属)是高亮度电子束的重要来源,在大规模加速器和台式显微镜的运行中无处不在。当金属的表面通过光波长的顺序进行纳米工程设计时,它可能导致表面等离子体偏振仪波的激发和结合,这些波动层驱动非线性光发射。在这项工作中,我们旨在评估金等离激元纳米植物,作为通过非线性光发射为加速器生产明亮电子束的概念。我们首先将它们的光学特性与数值计算从第一个原理进行比较,以确保我们制造这些纳米级结构的能力。通过测量发射光电流,可以发现它们的非线性光发射产量,因为它们的驱动激光的强度各不相同。最后,使用螺线管扫描技术发现该电子源的平均横向能。我们的数据证明了这些阴极的能力,可以在光发射对以线性过程驱动的金属上的光发射效率方面提高十倍。我们发现,在大于2 GWCM -2的光敏性下,这些阴极具有稳健性,并且能够达到100 na的持续平均电流,而不会降解性能。发现生成的束的发射量是高度不对称的,我们可以通过涉及图案表面的不对称粗糙度的计算来解释这一事实。这些结果表明,使用纳米工程表面作为增强的光(增强光),为高平均电流电子束提供了强大的空气稳定来源,具有巨大的工业和科学应用潜力。
差异相对比对比(DPC)扫描透射电子显微镜(STEM)最近引起了显着的兴趣,可以在高空间分辨率下绘制静电和磁场的映射。然而,由于其对静电和磁场的同时敏感性,磁性样品上DPC测量的解释并不直接。在这项工作中,我们证明了对洛伦兹力的两个贡献可以通过电子束的时间反转操作分离。在实践中,通过重复将样品升至180后,可以通过重复DPC-STEM测量来轻松实现这种情况。两种贡献的分离允许区分静电电势的影响,例如,具有均匀成分的样品中的厚度变化与实际磁信号。这种方法与DPC-stem或更普遍地通过4D词干对磁纳米结构的研究特别相关。
几乎所有光 - 互动的基本原因是空间和时间上的原子运动。为了提供类似电影的动力学访问,我们将电子显微镜与AttoSond激光技术统一。以这种方式,我们将现代电子束的令人敬畏的空间分辨率与光线周期[1]提供的壮观时间分辨率相结合。选定的结果将报告在超材料内的电场[2-3],爱因斯坦 - de-haas对原子维度的影响[4],相变的反应路径[5]和自由电子Qubit态的形成[6]。通过颠覆性成像技术实现了许多科学和技术的突破,我们的4D电子显微镜可能在原子维度上发挥了轻度相互作用的作用。
• 电流施加到阴极(灯丝)上,使其升温并产生电子云 • 电子束产生的能量是原子受激发而将电子从轨道上释放出来的结果。 • 这些电子现在可以自由地成为电子束的一部分。 • 然后,该电子束通过高压场加速,获得速度和能量,直到电子撞击目标,在那里该能量被转换成热量和 X 射线。 • 转换成热量的能量通过阳极辐射,剩余的能量以 X 射线的形式释放出来。 • 该能量约为电子束产生的总能量的 0.1 - 2%。 • 该 X 射线是电磁波形式的能量。
Spring-8-II是Spring-8的主要升级项目,该项目于1997年10月成立为第三代同步辐射光源。这个升级项目旨在同时实现三个目标:实现出色的光源性能,对老年系统的翻新以及整个设施的功耗显着降低。将通过(1)用五弯曲的Achromat One替换现有的双弯曲晶格结构来实现将实现,((2)将储存的束能量从8降低到6 GEV,(3)通过安装水平辐射压力板的高度辐射式damp prighting semptres wig wig wig wig wig wig wig wig wig wig prighting wig prighting wig的水平阻尼分区的数量增加。 使用短期内置内部驱动器允许提供超级X射线射线,同时即使在减少6 GEV的电子灯光能量下,也可以保持高能光谱范围。 为了减少功耗,专用的注射器系统已关闭,并以时间共享的方式将紧凑型X射线自由电子激光器(XFEL)设施Sacla(紧凑型X射线自由电子激光器(XFEL)设施)的高性能线性加速器(XFEL)设施使用。 这允许在SACLA同时运行XFEL实验,并将电子束的全/充气注入到环中。 本文概述了Spring-8-II项目的概念,光源的系统设计以及加速器组件设计的详细信息。将实现,((2)将储存的束能量从8降低到6 GEV,(3)通过安装水平辐射压力板的高度辐射式damp prighting semptres wig wig wig wig wig wig wig wig wig wig prighting wig prighting wig的水平阻尼分区的数量增加。 使用短期内置内部驱动器允许提供超级X射线射线,同时即使在减少6 GEV的电子灯光能量下,也可以保持高能光谱范围。 为了减少功耗,专用的注射器系统已关闭,并以时间共享的方式将紧凑型X射线自由电子激光器(XFEL)设施Sacla(紧凑型X射线自由电子激光器(XFEL)设施)的高性能线性加速器(XFEL)设施使用。 这允许在SACLA同时运行XFEL实验,并将电子束的全/充气注入到环中。 本文概述了Spring-8-II项目的概念,光源的系统设计以及加速器组件设计的详细信息。,((2)将储存的束能量从8降低到6 GEV,(3)通过安装水平辐射压力板的高度辐射式damp prighting semptres wig wig wig wig wig wig wig wig wig wig prighting wig prighting wig的水平阻尼分区的数量增加。使用短期内置内部驱动器允许提供超级X射线射线,同时即使在减少6 GEV的电子灯光能量下,也可以保持高能光谱范围。为了减少功耗,专用的注射器系统已关闭,并以时间共享的方式将紧凑型X射线自由电子激光器(XFEL)设施Sacla(紧凑型X射线自由电子激光器(XFEL)设施)的高性能线性加速器(XFEL)设施使用。这允许在SACLA同时运行XFEL实验,并将电子束的全/充气注入到环中。本文概述了Spring-8-II项目的概念,光源的系统设计以及加速器组件设计的详细信息。
本发明涉及一种装置,通过该装置,物体通过电子束和影响电子流的静电场或电磁场(电子透镜)以放大的比例成像。根据本发明,多个电子透镜影响电子束,并一起以显微镜或望远镜的方式实现更高的放大率。如前所述,电磁电子透镜和带负电的静电电子透镜相当于光学中的会聚透镜,而带正电的静电电子透镜相当于发散透镜。因此,通过组合这些透镜,可以为电子束模拟光学中利用会聚或发散光束的任何已知装置。此外,还可以以这种方式构建直接使用或反射后使用电子束的显微镜或望远镜。通过以显微镜或望远镜的方式组合多个透镜,可以获得特别高的图像放大倍数。使用电子束具有特别大的优势,