我们将物质的第四个状态称为血浆,表明电离,绝中性气体。气体介质中的电排放是一种正常且简便的方法,可以将气体转化为中等压力条件下的血浆。电子温度,电子密度和气体温度表征了血浆的质量。尤其是在电子温度和气体温度方面,我们有设计放电的空间为热等离子体(电子和气体温度均处于平衡状态)或非热等离子体(比气温高于气温的量级高)。这表明可以在一定程度上对受电子温度和气温控制的电子撞击反应和热化学作用组成的血浆化学作用。在这方面,我们认为血浆技术可以被视为一种多功能反应平台,可以在电动的未来中替换并增强传统燃烧和基于催化剂的燃烧。这种观点尤其突出了低温等离子体技术领域的燃烧社区的机会,详细介绍了等离子体化学的潜力及其与燃烧研究的相似之处。
智能,电子温度控制的食物温暖的食物Matthew B. Olajide Olabisi Onabanjo University,尼日利亚,Steven G. Ogunobi Abraham Adesanya Polytechnic,Ijebu-igbo,Ijebu-igbo,尼日利亚,尼日利亚S. Kuponiyi Gateway(ICT)尼日利亚尼日利亚伊洛林大学尼日利亚伊洛林大学的阿库尔,尼日利亚摘要。 本文介绍了智能,电子温度控制的食物温暖器的设计和开发,旨在以精确和效率保持最佳的食物温度。 提出的系统结合了基于温度传感器的结构,以使用高级传感器和加热元件来监视和调节内部温度。 该系统的设计考虑了能源效率,采用智能算法来最大程度地减少功耗,同时确保均匀加热。 原型制作和实验评估证明了食物温暖的能力,可以在所需设定点的±2°C内保持温度,从而确保食品质量和安全性。 此智能设备旨在用于国内和商业用途,为温度敏感的食物存储和服务应用提供便利的解决方案。智能,电子温度控制的食物温暖的食物Matthew B. Olajide Olabisi Onabanjo University,尼日利亚,Steven G. Ogunobi Abraham Adesanya Polytechnic,Ijebu-igbo,Ijebu-igbo,尼日利亚,尼日利亚S. Kuponiyi Gateway(ICT)尼日利亚尼日利亚伊洛林大学尼日利亚伊洛林大学的阿库尔,尼日利亚摘要。本文介绍了智能,电子温度控制的食物温暖器的设计和开发,旨在以精确和效率保持最佳的食物温度。提出的系统结合了基于温度传感器的结构,以使用高级传感器和加热元件来监视和调节内部温度。该系统的设计考虑了能源效率,采用智能算法来最大程度地减少功耗,同时确保均匀加热。原型制作和实验评估证明了食物温暖的能力,可以在所需设定点的±2°C内保持温度,从而确保食品质量和安全性。此智能设备旨在用于国内和商业用途,为温度敏感的食物存储和服务应用提供便利的解决方案。
相对论温度电子高于0.5 MeV的温度电子通常以大约10 18 w/cm 2的激光内部产生。以非相关强度运行的高重复速率激光器(≃1016 w/cm 2)的产生是针对紧凑型,超短,台式电子源的基础主教。能够利用激光 - 血浆相互作用的不同方面的新策略对于降低所需的强度是必要的。我们在这里报告,一种新型的微螺旋体动态靶标结构技术,能够在蓬代尺度(10 18 w/cm 2)所需的强度的1/100中产生200 keV和1 meV电子温度,以产生相对论电子温度。将这种方法与“非理想的” Ultrashort(25 fs)脉冲以4×10 16 W/cm 2的形式结合了固定,优化的尺度长度和微观访问的概念,可实现两样式的衰减增强的电子加速度(25 fs)脉冲。具有KHz的射击可重复性,这种精确的原位靶向物可以通过毫升joule类激光器产生高达6 MeV的质量质量束状电子发射,这对于所有科学领域的时间分辨,微观研究都可以进行转化。
(DC-GDPAU)是一个直流辉光放电等离子体实验,由艾因夏姆斯大学(埃及)物理系设计、建立和运行。该实验的目的是通过将印刷电路板(PCB)暴露于等离子体来研究和改善它的某些特性。该装置由圆柱形放电室组成,其中固定有可移动的平行圆形铜电极(阴极和阳极)。它们之间的距离为12厘米。该等离子体实验在氩气的低压范围(0.15 - 0.70 Torr)下工作,最大直流电源为200 W。在两个电极之间每厘米处测量和计算了等离子体的帕申曲线和电等离子体参数(电流、伏特、功率、电阻)。此外,使用双朗缪尔探针获得了不同径向距离下的电子温度和离子密度。电子温度(KT e )保持稳定在6.58至10.44 eV范围内;而离子密度(ni )范围为0.91×10 10 cm −3 至1.79×10 10 cm −3 。采用数字光学显微镜(800倍)比较等离子体暴露前后对电路布局成形的影响。实验结果表明,等离子体暴露后电导率增加,铜箔表面的粘附力也有所改善。电导率的显著增加与样品表面的位置以及暴露时间直接相关。这表明所获得的结果对于开发用于不同微电子设备(如航天器上的设备)的PCB制造非常重要。
使用镍的几秒极端紫外线(XUV)瞬态吸收光谱在镍M 2、3边缘进行镍中光激发载体动力学的直接测量。可以观察到,可以通过高斯拓宽(σ)和地面吸收光谱的高斯拓宽(σ)和红移(ωs)来描述光激发镍的核心水平吸收线形状。理论预测,实验结果证明,在初始快速载体热化后,电子温度升高(t)与高斯拓宽因子σ呈线性成正比,从而提供了电子温度松弛的定量实时跟踪。测量结果揭示了50 nm厚的多晶镍纤维的电子冷却时间,为640±80 fs。使用热热载体,光谱红移与电子温度变化ωs∝T 1具有幂律关系。5。通过载流子散射的快速电子热化伴随并遵循标称的4-FS光激发脉冲,直到载体达到二硫代平衡为止。与<6 FS仪器响应函数结合在一起,从在不同泵浦流动下获取的实验数据中估算了从34 fs到13 fs的载体热化时间,并且观察到电子热化时间随着泵的增加而降低。该研究提供了一个初始示例,即用XUV光实时测量金属中的电子温度和热化,并为在具有核心水平吸收光谱的金属中进一步研究光诱导的相变和载体传输的基础。
本备忘录提供了一些建议,以支持制定有效的应急计划,以应对计划内和计划外的 IT 停机。输血服务依赖于许多 IT 系统,包括实验室信息管理系统 (LIMS)、电子病历系统 (EPR)、电子血液管理系统 (EBMS)、电子温度监测系统 (ETM)、采购系统、血液成分订购系统、员工排班系统以及支持质量管理系统的系统。应急计划的一般原则适用于输血中使用的所有电子系统,但本文件重点介绍对安全输血实践至关重要的系统:LIMS、EPR、EBMS 和 ETM。
主要功能 • 电子传感器:每个回路的进水温度、出水温度、环境温度 • 安全装置:高压开关、蒸发温度保护、排气温度控制、出水温度保护、压缩机电机过流、风扇热保护器、防循环和保护定时器、带电子温度控制的数字显示控制器、逆相保护器、每个电路的内部保险丝 • 无电压触点用于:泵接触器、警报、每个压缩机的运行、常规运行 • 远程输入:开/关、流量开关、双设定点 • 详细信息:每个回路的进水温度和出水温度、环境温度、每个电路的状态、安全关闭时电路的状态
我们提出了一种将太赫兹 (THz) 频率量子级联激光器 (QCL) 完全集成到稀释制冷机内的方案,以便将 THz 功率定向传输到样品空间。我们描述了位于制冷机脉冲管冷却器级上的 2.68 THz QCL 的成功运行,其输出通过空心金属波导和 Hysol 热隔离器耦合到位于毫开尔文样品级上的二维电子气 (2DEG) 上,实现了从 QCL 到样品的总损耗 ∼− 9 dB。热隔离器限制了热量泄漏到样品空间,实现基准温度 ∼ 210 mK。我们观察了 QCL 在 2DEG 中引起的回旋共振 (CR),并探讨了 QCL 对制冷机所有阶段的加热影响。在低至 ∼ 430 mK 的电子温度下可以观察到由 THz QCL 引起的 CR 效应。结果表明,在稀释制冷机环境中利用 THz QCL 以及在极低温(< 0.5 K)凝聚态实验中传输 THz 功率是可行的。
简要说明:国际参考电离层 (IRI) 是由空间研究委员会 (COSPAR) 和国际无线电科学联合会 (URSI) 赞助的一个国际项目。这些组织在 20 世纪 60 年代末成立了一个工作组,根据所有可用的数据源,制定电离层的经验标准模型。该模型的几个稳步改进版本已经发布。IRI 描述了从约 50 公里到约 2000 公里的高度范围内的电子密度、电子温度、离子温度和离子成分。它提供了磁平静条件下非极光电离层的月平均值。主要数据来源是全球电离层网络、强大的非相干散射雷达(Jicamarca、Arecibo、Millstone Hill、Malvern、St. Santin)、ISIS 和 Alouette顶部探测器,以及几颗卫星和火箭上的现场仪器。IRI 每年在特别 IRI 研讨会期间更新(例如,在 COSPAR 大会期间)。计划进行几项扩展,包括离子漂移模型、极光和极地电离层的描述以及对磁暴效应的考虑。
我们报告了Microquasar Grs 1915 + 105中的一个重大重塑事件,该事件于2021年7月观察到,其中有更好和努力。此事件的特征是柔软状态的准周期振荡(QPO),但通常没有这些振荡。它也以磁盘风电离度的增加为标志。通过使用Hilbert-Huang Transform(HHT),我们使用NICER和NUSTAR的数据从光曲线中构成了稳定的低频QPO。我们的光谱分析显示了Fe XXV吸收线的变化较弱,并且使用QPO相的Fe XXV吸收边缘发生了巨大变化。其他光谱参数,包括光子指数和种子光子温度,与QPO相正相关,但电子温度成反比。基于我们的发现,我们建议观察到的QPO是由磁性活性而不是动力引起的。磁场驱动了高电离低速材料的失败磁盘风。这些结果支持积聚弹出不稳定性模型,并提供了对被黑洞磁化的吸积 - 注射过程动力学的更深入的见解。