许多诺贝尔奖……•1956年晶体管(Bardeen,Brattain,Shockley)•1985年量子大厅效应(Klitzing)•1986年扫描隧道显微镜(Binnig,Rohrer,Rohrer)•1996年,Buckyballs(Curl,Kroto,Smalley,Smalley)•1998年密度功能(KO)•2000 Heterj&ICJ(2000 Heter)(2000 Hetery)基尔比克里默(KROEM),•2000年指挥聚合物(Heeger)•2007年巨型磁场耐药(Fert&Grunberg)•2009年CCD和光纤(Kao,Boyle&Smith)•2000年QHE(laughlin,laughlin,Stormer,Tsui,tsui,tsui,tsui)•2010年geim&nevoselof(geim&nogoselof)•
2015 年,哥本哈根大学经济管理研究所(CIEM)、劳动科学与社会事务研究所(ILSSA)和发展经济学研究组(DERG)共同开展。这是第六次在越南正规和非正规制造企业中开展中小企业(SME)合作小组调查。2015 年的调查包括对 10 个省份(即河内、海防、胡志明市和河西、富寿、义安、广南、庆和、林同和隆安省)2,600 多家从事制造业的中小型非国有企业进行面对面访谈。调查结构由三部分组成:(i)针对业主或经理的主要企业问卷;(ii)对随机选择四分之一的企业中的随机一部分员工进行的员工问卷;和(iii)经济账户模块。企业层面的调查则收集企业业绩、企业历史、就业、商业环境等信息,
在接近驱动的感应中,探针和分析物之间的相互作用通过导致两个探针成分或信号部分的距离变化而产生可检测的信号。通过将此类系统与基于DNA的纳米结构,高度敏感,特定和可编程的平台进行连接。从这个角度来看,我们描述了在接近驱动的纳米传感器中使用DNA构建块的优点,并概述了该领域的最新进展,从传感器到迅速检测到食物中的农药到鉴定血液中罕见癌细胞的探针的传感器。我们还讨论了当前的挑战,并确定需要进一步发展的关键领域。©2023作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/2754-2726/ace068]
摘要:我们提出了两种用于制造阴影面罩的方法,以将电极蒸发到纳米材料上。在第一个中,我们将商业纤维激光雕刻系统的使用与容易获得的铝箔结合在一起。此方法适用于制造50 µm线宽度和最小特征分离为20 µm的阴影面具,并且使用它来创建具有复杂图案的口罩非常简单。在第二种方法中,我们使用市售的乙烯基切割机对乙烯基模具面膜进行图案,然后使用玻璃纤维来定义电极之间的分离。使用这种方法,我们实现了分隔15 µm的良好的固定电极,但是与基于激光的电极相比,该技术在创建复杂的掩码方面的用途较小。我们通过基于MOS 2制造场效应晶体管设备来证明这些技术的潜力。我们的方法是一种具有高分辨率和准确性的阴影面膜的经济高效且易于访问的方法,使其可用于更广泛的实验室。
摘要:现代电子纺织品正朝着可穿戴的可穿戴纺织品迈进,即所谓的纺织品,这些纺织品的微电子元素嵌入了纺织品面料上,可用于各种功能类别。有不同的方法将刚性微电源组件整合到纺织品中以开发智能纺织品,其中包括但不限于物理,机械和化学方法。集成系统必须满足灵活,轻巧,可拉伸且可洗的功能,以提供卓越的可用性,舒适性和非感染性。此外,由此产生的可穿戴服装需要透气。在这项审查工作中,讨论了微电子的三个级别的集成到纺织结构中,纺织品适应,纺织品集成和基于纺织品的集成。纺织品集成和纺织品适应的电子纹理无法有效地满足其灵活和可洗的。为了克服上述问题,研究人员研究了使用各种机制在纤维或纱线水平上将微电子的整合到纺织品中。因此,由于最终产品的灵活性和可洗可用性优势,一种基于纺织品的新方法,基于纺织品的挑战。通常,本综述的目的是提供对电子组件的不同互连方法的完整概述。
引言——过去几十年来量子光学[1 – 4]的进展使得量子力学的基础测试[5,6]、量子光子态的测量[7 – 9]和量子技术的实现[10 – 14]成为可能。这些成就源于光子探测方案的发展,例如汉伯里·布朗-特威斯实验[15]、符合测量[6]、光子数分辨探测器[16,17]和用于量子态层析成像[18 – 20]的同差探测[7 – 9]。传统的量子光探测器依赖于光子与固态系统(如雪崩光电二极管[21 – 23]、超导纳米线[24,25]和光电倍增管[26,27])的相互作用。其他灵敏的量子光学探测器依赖于与有效两能级系统(例如原子、囚禁离子或超导量子比特)的光子相互作用 [28 – 32]。更先进的检测方案促进了光学非线性以增加检测带宽 [33,34]。然而,当前的量子光学技术在空间分辨率方面受到限制,并且由于电子元件的响应时间而限制了检测速率和带宽。在这里,我们提出了一种使用自由电子-光子纠缠 [35 – 37] 进行量子光子态层析成像的量子光学检测方案。我们展示了同质型自由电子与光子态的相互作用(图 1)如何通过电子能谱测量在相空间中提取有关该状态的最大信息。这种方法,我们称之为自由电子量子光学检测(FEQOD),具有由电子-光子耦合强度设定的基本信息限制,允许
Nordson 提供种类繁多的产品,专注于为电子和半导体行业提供工艺、测试和检测解决方案。无论您是否需要使用 Nordson Test & Inspection 的声学检测来检查封装级分层,我们都会为 PCBA 和封装级电子产品制造提供一流的技术解决方案,以及全球支持网络,以确保您正常运行并最大限度地减少停机时间。
探究凝聚态物质的微观电子结构。虽然可以从光电效应的物理学中轻松理解其基本原理,但在将 PES 信号转换为有用信息之前,还需要进行许多假设和近似。假设学校的学员已经具备该方法的一些基本知识(作为实践者或理论家),我的入门讲座将尝试概述 PES 方法论的核心概念和思想,并为后续的 SUCCESS 讲座计划做好准备。除了显而易见的要点之外,我还将尝试涉及一些特殊问题,这些问题在标准文献中并不常见,但随着该技术发展到新的光子强度和/或能量范围,这些问题可能会变得相关。我计划涵盖的主题包括(不一定按此顺序,只要时间允许):
由外部信号控制的单个电子的转移首先由 Pothier 等人于 1991 年在具有 3 个铝结的单电子隧穿 (SET) 泵中实现。。该装置产生的电流在标称值 I = ef 的 1/103 以内,其中 e 是基本电荷,f 是泵浦频率。NIST 制造了具有 5 个结 [2] 和 7 个结 [3] 的类似泵,结果显示每个周期的误差分别约为 106 分之 5 和 108 分之 1。在这些装置中,每个电子转移事件都可以通过附近的 SET 晶体管进行监控,因此泵浦的电子实际上可以被“计数”。7 结泵足以用于基础计量,特别是基于计数电子的电容标准 [4]。此类标准于 1998 年首次展示 [5],最近已完成完整的不确定度预算 [6]。过去 10 年,人们的努力并未追求更低的误差率,而是集中于 (1) 了解误差率理论与实验之间的巨大差异 [7–10]、(2) 量化泵用于电容标准时的性能限制 [11],以及 (3) 通过使用更少的结实现相同的误差率来简化泵操作 [12,13]。此外,人们还探索了其他几种可以通过传输单个电子(或超导状态下的库珀对)产生电流的装置。在 [14] 中可以找到对这些方法的广泛(但有些过时)的回顾。请参阅本书 [15] 中 Kemppinen 等人的文章。了解最近的参考资料和对这种新方案的详细讨论。总的来说,这些方法承诺的电流比 SET 泵可能提供的电流大得多,但尚未证明计量所需的精度。本文首先回顾了 SET 泵的操作和错误机制,然后讨论了使用 SET 泵的几个实际方面。目的是让读者了解在计量实验中实施 SET 泵的主要挑战,并
光耦合器和变压器通常用于医疗系统隔离电路,其缺陷在设计界众所周知。光耦合器速度慢,且性能随温度和设备使用年限变化很大。它们是单端设备,因此共模瞬态抗扰度 (CMTI) 较差。此外,光耦合器采用砷化镓 (GaAs) 工艺制造,具有固有磨损机制,在高温和/或 LED 电流升高时会导致 LED 发射永久减少。这种性能下降会降低光耦合器的可靠性、性能和使用寿命。虽然变压器比光耦合器速度更快、可靠性更高,但它们无法传递直流和低频信号,从而限制了系统时序(例如导通时间和占空比)。变压器也往往体积较大、功率效率低,并且通常需要额外的外部元件来复位磁芯。