聚(二磷酸腺苷核糖)聚合酶(PARP)已成为针对癌症的有效治疗策略,该策略靶向DNA损伤修复酶。PARP靶向化合物用螺旋钻电子标记 - 发射放射性核素可以被困在肿瘤组织中的大坝DNA附近,在肿瘤组织中,高电离电位和短距离促进螺旋杆电子通过产生复杂的DNA损害,从而杀死癌细胞,并对周围的正常组织产生最小的损害。在这里,我们报告了[123 I] CC1,这是一种123 I标记的PARP抑制剂,用于癌症的放射性治疗。方法:铜介导的123 i iododeboro-可提供的硼醇酯前体的iododeboro-nation [123 I] CC1。在人类乳腺癌,胰腺腺癌和胶质母细胞瘤细胞中确定了细胞摄取的水平和特异性[123 I] CC1的治疗效果。在携带人类癌异种移植物(MDA-MB-231,PSN1和U87MG)的小鼠中评估了[123 I] CC1的肿瘤摄取和肿瘤生长抑制。结果:在所有模型中,体外和体内研究表明[123 I] CC1的选择性摄取。signifer降低的克隆发育性,这是在体内因电离辐射抑制肿瘤生长抑制的代理,在体外观察到了几乎10BQ [123 I] CC1。静脉注射后1H的生物分布在1H时显示PSN1肿瘤异种移植物摄取0.9 6 0.06每克组织注射剂量。静脉内给药的[123 I] CC1(3 MBQ)能够显着抑制PSN1异种移植肿瘤的生长,但在表达PARP较低的异种移植物中的有效性较低。[123 I] CC1并未对正常组织引起显着毒性。结论:总之,这些结果表明[123 I] CC1作为表达PARP癌症的放射性疗法的潜力。
•高度激发原子状态中电子的绕循环•小分子的旋转•蛋白质重要的集体模式的振动•半导体及其纳米结构中电子的谐振频率•超导能量能量隙
假设:存在一个宏观量子波函数ψ(⃗R,t),描述了超导体中超级电子的整个合奏的行为。此处ψ(⃗R,t)是一个磁场状的数量,描述了超电子的相干行为。宏观量子波函数(MQWF)的归一化约束:rψ∗(⃗R,t)ψ(⃗R,t)dv = n ∗,其中n ∗是MQWF描述的超级电子总数。请注意,这里不是复杂的共轭(n是真实的)!因此,超电子的局部密度为ψ∗(⃗R,t)ψ(⃗R,t)= n ∗(⃗R,t)。请注意| ψ(⃗R,T)| 2不再是概率,而是实际上描述了所有超级电子的子集的位置。因此,概率流的流动⃗j概率现在描述了粒子的实际流量或真实的物理电流。
麻省理工学院的物理学家及其同事首次在量子层面测量了固体中电子的几何形状。科学家早就知道如何测量晶体材料中电子的能量和速度,但到目前为止,这些系统的量子几何形状只能从理论上推断,有时甚至根本无法推断。
当材料的物理尺寸与电子的波长匹配或减小时,半导体中就会发生量子限制,从而产生量化的能级和离散的电子态。这是由于电子的波粒二象性,它同时表现出粒子和波的特征。限制能是对应于半导体纳米结构(如量子点)中电荷载流子的量子限制的能量。当这些结构的尺寸接近或等于电子的德布罗意波长时,就会产生量化的能级。基于有效质量近似并假设一个理想的球形量子点,其中激子被限制在球形限制势中,Harry 和 Adekanmbi (2020) 给出了球形量子点的限制能:
超导冷凝物:基本思想是将超导体视为量子系统,其中样品中的所有电子都可以通过同一波函数描述,这与仅一个电子的波函数类似。这种行为称为相干行为。(一个更熟悉的示例是激光,在这种情况下,激光发出的所有光子均以相同的波函数为单位,具有相同的频率,相同的波长和相同的阶段。)为了使设备成为超导,其所有电子的宏观分数就足够了。例如,在较高的温度下,参与超导冷凝水波函数的电子的比例降低,实际上在t = tc时为零。
我们研究了在“严格”空间变化的磁场(但不满足磁单极子条件)下相对论冷电子的二维运动。我们发现,在恒定磁场的情况下出现的朗道能级简并性在磁场变化时会消失,自旋向上和自旋向下电子的能级会根据磁场变化的性质以有趣的方式排列。此外,变化的磁场会将零角动量电子的朗道能级与正角动量分开,而恒定场只能将能级分为正角动量和负角动量。探索非均匀磁场中的朗道量子化本身就是一项独特的事业,对凝聚态物质、天体物理学和量子信息等领域都有跨学科影响。作为示例,我们展示了磁化白矮星,它们受到变化的磁场,同时受到洛伦兹力和朗道量子化的影响,从而影响底层的简并电子气,表现出对钱德拉塞卡质量极限的明显违反;并且在空间增长的磁场存在下,电子的量子速度会增加。
面向欧洲市场的新系统IPCEI 微电子的目标是扩展德国和欧洲的微电子关键技术。为汽车工业、工业 4.0 和其他关键应用开发创新技术和组件。作为资助措施的一部分,将对专注于芯片制造、代工专业知识、硬件设计、工艺知识、生产设施和下游应用的公司进行定向投资。这样,就可以在这些领域建立初步的工业应用,并挖掘微电子的技术和经济潜力。这不仅使参与的公司受益,也使整个欧洲的下游行业受益,它们可以将研究结果用于新的或改进的应用。