在2017年,NIST启动了量子后签名方案的标准化过程[11],以抵制(未来)量子计算机的威胁。在第3轮[1]结束时,选择了基于哈希的固定型+ [9]和基于晶格的二硫思合原[10]和猎鹰[16]进行标准化。可以提供前两个方案的草案标准[13,14],而预计今年的Falcon标准草案。为了进一步多样化签名方案所基于的假设,NIST已开始呼吁签名方案[12]。在他们的其他电话中,NIST宣布了超越不可遗忘的功能,或者是简短的buff,由Cremers等人正式化。[4],根据所需的特征。Buff属性增加了针对恶意产生的(公共)键的弹性。这三个属性是:独家所有权(EO,签名可以在几个公共钥匙下验证?),消息结合签名(MBS,签名可以验证多个消息吗?)和不可降低性(nr,给出了未知消息的签名,对手可以在其自己的密钥下对此未知消息进行另一个签名?)。Pornin和Stern [15]首先引入了与独家所有权概念有关的三种不同的签名转换。在[4]中,Cremers等。证明
朱奇·伯德特(Juce Bordet),大学库鲁瑟斯(Bruxeles),布鲁塞尔(Brussels),比利时(M Piccart MD教授,C cotirious MD);加利福尼亚州旧金山的UCSF Heller Diller Family Cancerive Cancer(四个博士学位的L J教授);欧洲研究与治疗或癌症总部,布鲁塞尔,比利时(C PONCET MSC,J M N LOPES CARDOZO MD,A PERIC PHD,B MEULEMANS MSC,J BOGISTS PHD);法国Vilejuve的Gusstave Roussy(S Delague MD);巴黎和圣云学院,法国巴黎,巴黎大学(J-Y Pierga MD); Chu网站Sainte-Elisabeth-Ucl Namur,Namur,比利时(P Vuulstic MD);研究所Curie -HôpitalReneRene Huginein,Saint Cloud,Frange(证明E Brain MD);荷兰阿尔克默(Alkmer)的西北Zeaky Group(弗雷德登法院医学博士);荷兰排行榜(P A Neire Home MD)的Allerian Henels;中心乔治·弗朗科斯·莱克莱克(George-Francois-leclerc),第基(Dijon),弗兰克(S Causeret MD); Jeron Bosch Zeaky,SheretoomedBost,荷兰(T J Smild MD);意大利米兰大学或米兰(证明G Valin MD);意大利米兰的欧洲机构或肿瘤学IRCC(Giale教授);议程,阿姆斯特丹,荷兰(A M Glas PhD);瑞士学院或Bioin组和大学或瑞士Lausanne(M Delorenz博士);
- 数字位“对于任何人来说,这一定很容易地识别签名是真实的,但除合法签名者以外的任何人都不可能生产它” - 密码学的新方向(1976)
2023年3月12日,纽约州金融服务部(NYSDFS)关闭了纽约签名银行(SBNY),并任命了联邦存款保险公司(FDIC)为银行的接管人。SBNY是一家全方位服务的商业银行,成立于2001年。截至2022年12月31日,SBNY的总存款为886亿美元,总资产为1104亿美元。sbny是该国第29大银行,其失败构成了美国历史上第三大银行的失败。截至2023年3月19日,FDIC估计SBNY失败的存款保险基金(DIF)的成本约为25亿美元。当FDIC终止接收权时,将确定确切的成本。FDIC是SBNY的主要联邦监管机构,3月下旬,FDIC主席Martin J. Gruenberg委托FDIC首席风险官对该机构对SBNY的监督进行内部审查,并向FDIC董事会向FDIC董事会提出报告,以便在2023年5月1日之前向公众释放。背景
摘要。在过去的十年中,向密码学家的过渡一直是密码学家的巨大挑战和努力,并具有令人印象深刻的结果,例如未来的NIST标准。但是,迄今为止,后者仅考虑了中央加密机制(sig-natures或kem),而不是更先进的机制,例如针对隐私的应用程序。特别感兴趣的是一种称为盲人签名,群体签名和匿名证书的解决方案家族,标准已经存在,并且在数十亿个设备中部署。在此阶段,尽管最近的作品提供了两种不同的替代方案,但在此阶段,没有一个有效的量子后对应物,尽管有两个不同的替代方案可以改善这种情况:一个具有相当大的元素的系统,但在标准套件下证明了安全性,或者在标准的系统下获得了更高效率的系统,以更有效的系统为代价提供了Ad-Hoc Interactive互动假设或弱化的安全模型。此外,所有这些作品仅考虑了尺寸的复杂性,而没有实现其系统所组成的相当复杂的构建障碍。换句话说,此类系统的实践性仍然很难评估,如果人们设想相应系统/标准的量词后过渡,这是一个问题。在这项工作中,我们提出了具有有效协议(SEP)的所谓签名构造,这是这种隐私性的核心。通过重新审视Jeudy等人的方法。(Crypto 2023)我们设法获得了上面提到的两个替代方案中的最佳选择,即短尺寸,没有安全性妥协。为了证明这一点,我们将SEP插入一个匿名的凭证系统中,达到少于80 kb的凭证。同时,我们完全实施了我们的系统,尤其是Lyubashevsky等人的复杂零知识框架。(Crypto'22),据我们所知,到目前为止还没有完成。因此,我们的工作不仅改善了保护隐私的解决方案的最新技术,而且还大大提高了对现实世界系统部署的效率和影响的理解。
σ=(g,e,s,v)被认为是安全的,可以免受适应性选择的消息和身份攻击的存在,如果对于所有ppta a,则概率p [euf-ibs-cmaσ(a)= 1]
机制是一项复杂的任务,需要对理论和实践攻击以及对量子计算等未来威胁的期望进行深入了解。我们全球领先的密码师团队已经开发了一种基于NTRU Lattices的量子安全签名计划,NTRU Lattices是一个著名的密码学概念,已有二十年了。Falcon是NIST PQC标准化决赛入围者之一,与Dilithium and Sphincs+一起,体现了这些努力。它以与椭圆曲线签名相似的稳健安全性,紧凑的签名和有效的验证时间而闻名。然而,由于猎鹰的实现涉及严重的复杂性,因为它依赖快速傅立叶正交化技术(FFO)技术。
摘要。在过去的十年中,向密码学家的过渡一直是密码学家的巨大挑战和努力,并具有令人印象深刻的结果,例如未来的NIST标准。但是,迄今为止,后者仅考虑了中央加密机制(sig-natures或kem),而不是更先进的机制,例如针对隐私的应用程序。特别感兴趣的是一种称为盲人签名,群体签名和匿名证书的解决方案家族,标准已经存在,并且在数十亿个设备中部署。在此阶段,尽管最近的作品提供了两种不同的替代方案,但在此阶段,没有一个有效的量子后对应物,尽管有两个不同的替代方案可以改善这种情况:一个具有相当大的元素的系统,但在标准套件下证明了安全性,或者在标准的系统下获得了更高效率的系统,以更有效的系统为代价提供了Ad-Hoc Interactive互动假设或弱化的安全模型。此外,所有这些作品仅考虑了尺寸的复杂性,而没有实现其系统所组成的相当复杂的构建障碍。换句话说,此类系统的实践性仍然很难评估,如果人们设想相应系统/标准的量词后过渡,这是一个问题。在这项工作中,我们提出了具有有效协议(SEP)的所谓签名构造,这是这种隐私性的核心。通过重新审视Jeudy等人的方法。(Crypto 2023)我们设法获得了上面提到的两个替代方案中的最佳选择,即短尺寸,没有安全性妥协。为了证明这一点,我们将SEP插入一个匿名的凭证系统中,达到少于80 kb的凭证。同时,我们完全实施了我们的系统,尤其是Lyubashevsky等人的复杂零知识框架。(Crypto'22),据我们所知,到目前为止还没有完成。因此,我们的工作不仅改善了保护隐私的解决方案的最新技术,而且还大大提高了对现实世界系统部署的效率和影响的理解。
我们引入了一种新的生成方法,用于合成3D几何形状和单视收集的图像。大多数现有的方法预测了体积密度,以呈现多视图一致的图像。通过使用神经辐射场进行体积重新定位,它们继承了一个关键限制:生成的几何形状嘈杂且不受限制,从而限制了输出网格的质量和实用性。为了打扮这个问题,我们提出了Geogen,这是一种新的基于SDF的3D生成模型,以端到端的方式训练。最初,我们将体积密度重新解释为签名距离函数(SDF)。这使我们能够引入有用的先验来生成有效的网格。然而,这些先验阻止了生成模型学习细节,从而将方法的可观性限制在现实世界中。为了解决这个问题,我们使转换可学习,并限制渲染深度图与SDF的零级集合一致。通过对手训练的镜头,我们鼓励网络在输出网格上产生更高的忠诚度细节。进行评估,我们介绍了一个从360度摄像机角度捕获的人类头像的合成数据集,以克服现实世界数据集所面临的挑战,而实际数据集通常缺乏3D同意,并且不涵盖所有摄像机角度。我们在多个数据集上进行的实验表明,与基于神经辐射场的先前发电模型相比,Geogen在视觉和定量上产生更好的几何形状。