1空客防御和太空GmbH,RechlinerStraße,85077 Manching,Andreas.schweiger@airbus.com 2德国航空航天中心E.V(DLR),飞行系统研究所,LilientHalplatz 7,38108 Braunschweig,umut.durak@drrr.decr.decr.decr.de chemnit.braunschweig Marina.reich@airbus.com,Stuttgart University of Stuttgart,飞机系统研究所,PFA 6 B. Annighoefer等人,关于航空电子系统和软件工程(Aviose'20)的第二名研讨会。 7 B. Annighoefer等人,第3条航空电子系统和软件工程的研讨会(Aviose'21)。 8 B. Annighoefer等人,第4届航空电子系统和软件工程研讨会(Aviose'22)。 9 B. Annighoefer等人,第5台关于航空电子系统和软件工程的研讨会(Aviose'23)。 10 M. Reich等,第6届航空电子系统和软件工程研讨会(Aviose'24)。6 B. Annighoefer等人,关于航空电子系统和软件工程(Aviose'20)的第二名研讨会。7 B. Annighoefer等人,第3条航空电子系统和软件工程的研讨会(Aviose'21)。8 B. Annighoefer等人,第4届航空电子系统和软件工程研讨会(Aviose'22)。9 B. Annighoefer等人,第5台关于航空电子系统和软件工程的研讨会(Aviose'23)。10 M. Reich等,第6届航空电子系统和软件工程研讨会(Aviose'24)。
系统符合相关的行业标准,法规和规格。合规性要求可能会因应用,行业和地理区域而异。1。监管标准:确定适用的监管标准,例如安全标准(例如IEC 61508,ISO 26262),电磁兼容性(EMC)标准(例如FCC,CE)和产品安全标准(例如,UL,CSA)。确保系统设计和组件符合这些标准。2。认证和测试:获得监管机构或认证机构的必要证书和批准。进行测试和评估以证明符合相关标准和法规。3。文档:维护合规性工作的文件,包括设计文件,测试报告,证书和合规性声明。确保文档是最新的,并且可以进行审核和审查。
摘要 — 无人驾驶飞行器 (UAV) 或无人机的航空电子系统是机载关键电子元件,用于调节、导航和控制无人机飞行,同时确保公共安全。现代无人机航空电子设备共同协作,通过实现稳定的通信、安全的识别协议、新颖的能源解决方案、多传感器精确感知和自主导航、精确的路径规划来促进无人机任务的成功,从而保证避免碰撞、可靠的轨迹控制和无人机系统内的高效数据传输。此外,必须特别考虑电子战威胁的预防、检测和缓解,以及与无人机操作相关的监管框架。本综述介绍了每种无人机航空电子系统的作用和分类,同时介绍了每种系统中可用替代方案的缺点和优点。调查了无人机通信系统、天线和位置通信跟踪。介绍了响应空对空或空对地询问信号的识别系统。讨论了无人机经典和更创新的电源。感知系统的快速发展提高了无人机的自主导航和控制能力。本文回顾了常见的感知系统、导航技术、路径规划方法、避障方法和跟踪控制。现代电子战使用先进技术,必须采用同样先进的方法来应对,以保证公众安全。因此,本文详细介绍了常见的电子战威胁以及最先进的对抗措施和防御措施。此外,本文还在国家监管框架和认证流程的背景下分析了无人机安全事件。最后,本文回顾了无人机的数据总线通信和标准,因为它们能够实现高效、快速的实时数据传输。
摘要 - 无人驾驶汽车(无人机)或无人机的狂热系统是在确保公共安全的同时调节,导航和控制无人机旅行的船上发现的关键电子组件。当代无人机航空电子学通过实现稳定的沟通,安全的识别协议,新颖的能源解决方案,多传感器准确的感知和自主性导航,精确的路径计划,确保避免碰撞,可靠的轨迹控制以及在UAV系统中的有效数据传输,从而促进无人机任务的成功。此外,必须对电子战威胁预防,检测和缓解以及与无人机操作相关的监管框架进行特殊考虑。本评论介绍了每个无人机航空电子系统的角色和分类学,同时涵盖了每个系统中可用替代方案的缺点和好处。对无人机通信系统,天线和位置通信跟踪进行了调查。识别系统响应空对空或空对面的询问信号。无人机古典和更具创新的功率来源。感知系统的快速发展改善了无人机自动导航和控制功能。本文审查了共同的感知系统,导航技术,路径计划方法,障碍方法和跟踪控制。现代电子战采用先进的技术,必须通过同样高级的方法来应对公众安全。因此,这项工作详细概述了常见的电子战争票价威胁和最先进的对策和防御辅助工具。此外,在国家监管框架和认证过程的背景下,分析了无人机安全事件。最后,审查了无人机的数据库通信和标准,因为它们可以有效且快速的实时数据传输。
现有的用于预测电子设备故障率的模型通常会显示出差异,与实际测量相比,稳定时期的预测值较高,在流失期间的值较低。尽管它们经常用于模拟时间序列过程中的强度函数,但复发性神经网络(RNN)却难以捕获事件序列之间的长距离依赖性。此外,强度函数的固定参数形式可以限制模型的概括。为了解决这些缺点,提出了一种新颖的方法,利用注意机制在不依赖强度函数的情况下生成时间点过程。为了量化模型和现实分布之间的差异,模型使用Wasserstein距离来创建损失函数。此外,为了提高可解释性和概括性,使用一种自动机制来评估过去事件对当前发生的影响。比较测试表明,这种方法的表现超过了可能的可能性模型,而没有先前了解强度功能和类似RNN的生成模型,从而将相对错误率降低了3.59%,并将错误预测准确性提高了3.91%。
使命:我们努力通过高级研发和技术创新来提供可靠和可持续的能源解决方案。我们的承诺是在土耳其和世界各地提供优质的产品和服务,以优先考虑客户对我们不间断的服务方法的满意度。
可以通过单击右上角的“页面帮助”按钮来查看此页面各个部分的一般指南。“页面help”还包括那些字段的“字段 - 特定帮助”,这些字段在该字段或以下显示了字段帮助按钮或问题。可以通过向下滚动页面保存来查看此类特定于现场的帮助。强制性字段由( *)指示。此要求不适用于禁用的字段。出于安全性/功能原因,浏览器的“后退按钮”已在ETS上使功能障碍。对于导航,请使用按钮,例如 - 上一个,下一个,重置,按每个屏幕上提供的取消。使用(»)调用中间处理的字段。建议在进行此处理时暂停进一步的数据输入。如果用户不活动30分钟(即,向服务器不提交30分钟),则会将会话计时,如果需要,用户将不得不再次登录。
ChatGPT、Gemini 和 Llama 等大型语言模型 (LLM) 将彻底改变工程流程,电子(系统)设计自动化 (EDA) 可能会受到深远影响。现代电子系统设计领域的特点是极其复杂,从嵌入式系统软件/硬件协同设计的复杂性到十亿晶体管规模的集成电路优化。这种复杂性,再加上对缩短上市时间的迫切需求,为自动化改进设计流程提供了无数机会。LLM 已经在这一领域取得了重大进展,并可能在未来改变 EDA 领域。
• DC-DC 转换器对 BESS 进行充电/放电控制,并将其电压提升至公共 DC 链路,以便 AC-DC 转换器可以作为 DC 链路和更大电力系统之间的直接接口。
生物可吸收电子设备作为临时生物医学植入物,代表了一类新兴技术,与目前需要在使用一段时间后进行手术移植的一系列患者病症相关。要获得可靠的性能和良好的降解行为,需要能够作为封装结构中生物流体屏障的材料,以避免有源电子元件过早降解。本文提出了一种满足这一需求的材料设计,其防水性、机械柔韧性和可加工性优于替代品。该方法使用由旋涂和等离子增强化学气相沉积形成的聚酐和氮氧化硅交替膜的多层组件。实验和理论研究调查了材料成分和多层结构对防水性能、水分布和降解行为的影响。电感电容电路、无线电力传输系统和无线光电设备的演示说明了该材料系统作为生物可吸收封装结构的性能。