在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
architecture: driving forces, features, and functional topology [J]. Engineering, 2022, 8: 42-59. DOI: 10.1016/j.eng.2021.07.013 [2] 中国移动 . 中国移动自智网络白皮书 (2023) [R]. 2023 [3] TM Forum. Autonomous networks: empowering digital transformation [R].2023 [4] OpenAI. ChatGPT plugins [EB/OL]. [2024-06-15]. https://openai.
使用基于密度函数理论的第一原理计算方法,我们对石墨烯,德国烯和二维石墨烯样晶晶(2D-GEC)的电子结构进行了深入探索。我们专门分析了这三种材料的元素结构,带性能和电子密度。基于密度函数理论框架内的第一原理计算,我们发现单层GEC具有独特的直接带隙特性,其直接带隙宽度预先计算为2.21 eV。通过将平面内应变应用于单层,我们掩盖了单层GEC具有可调的带结构。研究结果表明
(! div>“#$%$&'#() *) *,“ $ 0 $ 7&) + 2- $ 0- $ 1913:; 5 %% 5&%,4/13#) div>
Sample SE T /dB SE R /dB SE A /dB SE A /SE R /% SSE t /(dB·(cm −2 ·g) −1 ) M3-MX-0 5.0 0.9 4.0 4.3 87.6 M3-MX-5 6.8 1.5 5.3 3.5 147.5 M3-MX-10 7.2 1.7 5.5 3.2 171.0 M3-MX-15 7.0 1.7 5.3 3.0一直m3-ag@mx-15 69.0 10.3 58.7 5.7 2 356.6 m3-ag@mx-20 68.2 10.3 57.8 5.6 2 719.8 m3-ag@mx-25 67.9 10.0 57.0 57.9 5.8 2 439.4 2 439.4
研究小组专注于模式识别,计算机视觉,信号处理和机器学习(深度学习)方法。我们的重点在于探索国际科学和技术最前沿,以建立智能图像解释(多模式遥感信息获取和处理),时空的大数据分析和处理,边缘计算(嵌入人工智能)以及其他相关领域的专业知识。
(1) 维数 一般取值 1 或 2 ,当 时,要求数据量 在数千点以上,但 过大不能保证序列具有相同 的性质; 一定时,若 ,需要较大才能取得 较好的效果,但是太大会丢失序列的许多细节信 息。 Pincus [ 14 ] 研究认为 比 效果好,可使 序列的联合概率进行动态重构时提供更详细的信 息。 (2) 用来衡量时间序列相似性的大小。如果 选得太小,估计出的统计概率会不理想;若选得 太大,会丢失时间序列中很多细节,达不到预期的 效果。 Pincus [ 14 ] 通过对确定性和随机过程的理论分 析及其对计算和临床应用的研究,总结出取值为 ( 为原始序列的标准差 ) 能得出有效 的统计特征。 (3) 表示输入数据点,一般取值为 100 ~ 5000 。因此根据上述原则,本文取 , 。根据实验研究发现当 时,不同 状态的脑电信号的样本熵并无太大差异;当 时,不同状态的脑电信号的熵值有明显差异。 因此 取值为 100 。即用长度为 100 点,间隔为 4 点 的滑动窗计算 EEG 在运动想象期 (2 ~ 6 s) 的样本 熵序列,然后求该序列的均值作为该 EEG 的样本 熵。 ERS/ERD 现象主要出现在 C3 和 C4 电极对应的 感觉运动区上,例如,右手运动想象时可观测到 C3 电极对应的感觉运动区 ERD 现象,左手运动想 象时可观测到 C4 电极对应的感觉运动区 ERD 现
图 1 有机光电突触器件 . (a) 人类视网膜和大脑系统示意图 ; (b) 储池计算结构 ; (c) 提拉法制备有机薄膜示意图 ; (d) C 8 -BTBT 薄膜的光学显微镜图像 ( 标尺 : 100 μm); (e) PDIF-CN 2 薄膜的光学显微镜图像 ( 标尺 : 100 μm); (f) C 8 -BTBT 薄膜的 AFM 图像 ( 标 尺 : 1.6 μm); (g) PDIF-CN 2 薄膜的 AFM 图像 ( 标尺 : 1.6 μm); (h) 具有非对称金属电极的有机光电突触晶体管器件结构 ; (i) 器件 配置为光感知型突触 ; (j) 器件配置为计算型晶体管 ( 网络版彩图 ) Figure 1 Organic optoelectronic synaptic devices. (a) The schematic diagram of human retina and brain system. (b) The architecture of a reservoir computing. (c) The preparation of organic thin films by dip coating method. (d) The optical microscope image of C 8 -BTBT film. Scale bar: 100 μm. (e) The optical microscope image of PDIF-CN 2 film. Scale bar: 100 μm. (f) The AFM image of C 8 -BTBT film. Scale bar: 1.6 μm. (g) The AFM image of PDIF-CN 2 film. Scale bar: 1.6 μm. (h) The schematic diagram of organic optoelectronic synaptic transistor with asymmetric metal electrodes. (i) The device is configured as a light-aware synapse. (j) The device is configured as a computational transistor (color online).
引用本文: 刘胜南, 付强, 冯楠, 张春华, 贺威.面向扑翼飞行机器人的电子稳像算法设计[J].北科大:工程科学学报 , 2024, 46(9): 1544- 1553. doi: 10.13374/j.issn2095-9389.2023.10.06.001 LIU Shengnan, FU Qiang, FENG Nan, ZHANG Chunhua, HE Wei.Design of an electronic image stabilization algorithm for flapping-wing flying robots[J].Chinese Journal of Engineering , 2024, 46(9): 1544-1553. doi: 10.13374/j.issn2095- 9389.2023.10.06.001