宽带间隙(WBG)碱性晶酸盐透明氧化物半导体(TOSS)近年来引起了越来越多的关注,因为它们的高载流子迁移率和出色的光电特性,这些特性已应用于诸如Flat-Panel显示器等广泛的应用。然而,大多数碱性地球酸盐是由分子束外延(MBE)生长的,有关锡源的问题存在一些棘手的问题,包括带有SNO和SN源的波动性以及SNO 2源的分解。相反,原子层沉积(ALD)是具有精确的化学计量控制和原子尺度上可调厚度的复杂stannate钙钛矿生长的理想技术。在此,我们报告了la-srsno 3 /batio 3 perovskite异质结构异质集成在SI(001)上,该结构使用ALD种植的La掺杂的Srsno 3(LSSO)作为通道材料,并用作MBE生长的Batio 3(BTO)作为介电材料。反射性高能电子衍射和X射线衍射结果表明每个外延层的结晶度为0.62,全宽度最高(FWHM)。原位X射线光电子光谱结果证实,ALD沉积LSSO中没有SN 0状态。这项工作扩展了当前的优化方法,用于减少外在LSSO/BTO钙钛矿异质结构中的缺陷,并表明过量的氧气退火是增强LSSO/BTO异质结构的电容性能的强大工具。Besides, we report a strategy for the post-treatment of LSSO/BTO perovskite heterostructures by controlling the oxygen annealing temperature and time, with a maximum oxide capacitance C ox = 0.31 μF/cm 2 and a minimum low- frequency dispersion for the devices with 7 h oxygen annealing at 400 C. The enhancement of capacitance properties is primarily attributed to a在额外的异位过量氧气退火过程中,膜中氧空位的减少和异质结构界面中的界面缺陷。
在许多应用中高质量晶状膜提供高质量薄膜的能源合成。在这里,我们通过利用扩散聚集过程来设计一种无毒溶剂方法来生产高度结晶的Mapbi 3钙钛矿。异丙醇溶液基于三碘化甲基三碘二碘(MAPBI 3),在这种情况下,晶体生长起始开始于远离平衡的不稳定悬浮液开始,随后的结晶驱动于溶解度参数。通过扫描透射电子显微镜(Stem)监测晶体的形成,观察到随着时间的流逝而演变成具有高晶体纯度的大晶粒,生长的小结晶中心。茎模式下的能量色散X射线光谱(EDS)显示新形成的晶粒中有富含Pb的核心壳结构。纳米光束电子衍射(NED)扫描定义的PBI 2晶体在PB富壳中具有新形成的晶粒中的单晶Mapbi 3核心。一周搅拌后,相同的聚集悬浮液仅表现出仅具有单晶体MAPBI 3结构的晶粒。NED分析显示了从核心壳结构到单晶晶粒的动力学缓慢过渡。这项研究对可能导致亚化学计量晶界影响的因素提出了有影响力的见解,从而影响太阳能电池性能。另外,已经提出了钙钛矿晶粒的结构,形态和光学特性。随后通过在低空烤箱中蒸发溶剂来制备高度结晶颗粒的粉末。薄膜Mapbi 3太阳能电池是通过溶解粉末并将其涂在经典制造路线中制造的。MAPBI 3太阳能电池的冠军效率为20%(19.9%),平均效率约为17%,而滞后效应低。在这里突出了制造无毒溶剂的材料结构的策略。这里设计的单晶增长既可以为材料的货架存储以及设备的更灵活的制造。该过程可能会扩展到其他字段,中间多孔框架和大型表面积将对电池或超级电容器材料有益。
物理学副教授 - 米兰 - 比科卡大学材料科学系(意大利)时期:2022年12月 - 现任“纳米级动力学超快显微镜实验室”的主要研究员(Luminad)。欧盟资助的FET-OPEN项目智能电子(GAn。964591)的科学协调员 - www.smartelectron.eu。物理助理教授 - 米兰 - 比科卡大学材料科学系(意大利)期间:2019年12月至2022年11月,“纳米级动力学超快显微镜实验室”(Luminad)的首席研究员。欧盟资助的FET-OPEN项目智能电子(GAn。964591)的科学协调员 - www.smartelectron.eu。科学家 - ÉcolePolytechniquefédédéralede Lausanne(瑞士)时期:2016年2月至2019年11月;顾问:Fabrizio Carbone教授。超快电子衍射,显微镜和光谱实验在Lumes实验室进行的。任命由玛丽·斯克洛多夫斯卡·居里(Marie Sklodowska-Curie)共同创立的EPFL奖学金计划部分支持(H2020 - MSCA - Cofund 2016,GAN。665667)。博士后研究学者 - 加利福尼亚理工学院(美国)期间:2011年11月至2016年1月;顾问:Ahmed H. Zewail教授(诺贝尔·劳拉(Nobel Laurate in Chemistry) - 1999年)。研究活动的重点是研究纳米材料中原子级超快现象的性质。M.Sc. 在法国萨克莱(法国)法国原子能委员会(法国)期间实习:2007年3月至2007年9月;顾问:尼古拉斯·巴雷特博士。 研究相关钙钛矿材料的表面特性。M.Sc.在法国萨克莱(法国)法国原子能委员会(法国)期间实习:2007年3月至2007年9月;顾问:尼古拉斯·巴雷特博士。 研究相关钙钛矿材料的表面特性。在法国萨克莱(法国)法国原子能委员会(法国)期间实习:2007年3月至2007年9月;顾问:尼古拉斯·巴雷特博士。研究相关钙钛矿材料的表面特性。在FP6 Incems欧洲项目的框架内支持我的任命。教学经验
59. 招聘广告: - 冶金系有色冶金教研室 Christian Doppler 铝合金变形-沉淀相互作用实验室招聘一名全职项目研究员(男/女/其他) - 参考编号:2411WPF Montanuniversität Leoben 是一所现代化的教学和研究机构,为科学和非科学领域的职业提供优越的条件。冶金系有色冶金教研室 Christian Doppler 铝合金变形-沉淀相互作用实验室招聘一名全职项目研究员(男/女/其他) - 从 2025-06-01 开始,雇佣合同期限为三年。根据 Uni-KV 的工资组 B1,每月最低工资不含增值税。费用:每周 40 小时(每年 14 小时)3,578.80 欧元,实际分类根据之前的相关经验。这项工作包括在现有的设备齐全的 TEM 中集成扫描进动电子衍射,并建立数据分析程序,通过评估纳米级的详细取向和相位分析,增强我们对铝合金进行高级研究的能力。详细的相位和应变场分析将提供关键见解,了解不同工艺条件下塑性变形时位错和沉淀物之间的复杂关系。与一家铝制品制造商合作,特别强调特殊和优质产品以及可持续工艺,这项研究旨在解决二次铝的日益整合,特别是在以性能为导向的行业。我们提供的内容:• 使用最先进的研究设施,包括先进的分析设备,如透射电子显微镜。• 创新和支持性的环境,由充满活力的研究小组中的技术开放、好奇心、开放的沟通和内在动机定义。 • 有机会进行国际合作并参与全球研讨会或会议,促进学术和专业网络的扩展。 • 为个人和专业发展提供结构化的环境,通过先进材料研究和实验技术的实践经验提供成长机会。 • 与行业合作伙伴合作,确保为可持续冶金的进步做出贡献。 我们正在寻找符合以下条件的候选人: • 准备好接受和尝试新技术和先进的分析技术,以突破材料研究的界限。 • 内在地受好奇心驱使,并致力于产生有影响力的研究成果。 • 在实践工作和理论分析方面都致力于高标准。 • 坚韧不拔、适应性强,在鼓励从成功和挑战中学习的环境中茁壮成长,为个人和职业发展提供强有力的支持。• 愿意与由年轻研究人员和经验丰富的导师组成的多元化团队合作,为重视开放沟通和相互支持的不断壮大的团队做出贡献。
定量测量微电子设备中电场的定量测量由位于原位的STEM Victor Boureeau 1,Lucas Bruas 2,Matthew Bryan 2,Matthew Bryan 2,Jean-LucRouvière3和David David Cooper 2** 1* 1。电子显微镜跨学科中心,EPFL,洛桑,瑞士。2。大学。Grenoble Alpes,CEA,Leti,Grenoble,法国。3。大学。Grenoble Alpes,CEA,Irig-Mem,Grenoble,法国。*通讯作者:David.cooper@cea.fr纳米尺度上字段的定量映射对于了解设备的行为并提高其性能至关重要。从历史上看,这是通过过轴电子全息图执行的,因为该技术已经成熟并提供了可靠的定量测量[1]。近年来,硬件的改进使扫描传输电子显微镜(STEM)实验期间的衍射模式的记录成为可能,从而生成所谓的4D-STEM数据集。越来越多的数据处理方法与特定的采集设置相结合,导致了广泛的像素化词干技术[2]。在这里,我们探讨了以像素化的茎构型进行的差异相位对比度(DPC)技术[3] [4]。它允许根据衍射平面中发射光束的强度位移对电场进行定量测量。我们将展示如何受显微镜和数据处理的配置影响类似DPC的像素化的茎测量值。结果将与电子全息图和仿真进行比较。样品在图1和图2中显示。1(c)。开始,我们将在掺杂的硅P -N结上进行工作,并以对称1 E 19 cm -3的浓度掺杂,在-1.3 V的反向偏置下进行检查。使用此样品,平均内部电位(组合电位)没有变化,偏置电压会增加内置电场。通过聚焦的离子束制备了连接的横截面,并在FEI Titan显微镜中使用Protochips Aduro 500样品支架附着在芯片上进行原位偏置实验,该实验在200 kV下运行。1(a,b),晶体厚度为390 nm,如收敛束电子衍射测量。使用二级离子质谱掺杂剂测量作为输入,用Silvaco软件对结中的电场进行建模。整个连接处的轮廓如图通过离轴电子全息图测量了偏置连接的电场,请参见图。1(c,d),并在除去非活动厚度后与建模很好地一致[1]。反向偏见的P-N连接的电场的大小约为0.65 mV.cm -1,耗尽宽度约为60 nm。已经研究了不同的像素化的茎构和处理方法,以测量连接处的电场。当探针大小大于特征场变化长度时,导致射击梁内部强度重新分布时,使用了一种算法(COM)算法。当传输梁小于场变化并经历刚性变速时,使用模板匹配(TM)算法[5]。2(a)。电场图如图首先,使用低磁化(LM)茎构型,使用的一半收敛角为270 µRAD,相机长度为18 m。连接处的衍射图显示了传输梁边缘处强度的重新分布,因此使用COM加工,请参见图。2(e)和图中绘制了一个轮廓。2(i)。连接点的耗尽宽度似乎约为100 nm,这表明由于LM茎配置的探针大小较大,
S. Krobthong A,K。Umma B,T。Rungsawang A,T。Mirian A,S。Wongrerkdee A,*,S。Nilphai c,*,K。Hongsith D,S。S. Choopun D,S。Wongrerkdee E,C.Raktham F,P. p. pimphag g,P。萨恩校园,纳洪病原体73140,泰国b科学系科学与农业技术系,拉贾马加拉科技大学兰纳大学兰纳大学,李·梅斯,泰国C物理学计划,科学技术系,泰国科学和科学系,自由艺术与科学学院,自由艺术和科学材料科学,Roi et Rajabhat University,Roi et roi and roi I Universitiat and roi Intact et 45120科科,朝鲜迈大学,夏安格·梅50200,泰国E工程学院,拉贾曼加拉技术大学,拉纳·塔克(Lanna Tak),塔克(Lanna Tak),塔克(Lanna tak),泰国(TAK 63000),泰国f教育学院,Uttaradit Rajabhat University,Uttaradit Uttaradit Uttaradit 53000,泰国泰国Gibers The thailand thailand thailand thailand thailand ththand thate in thailand ththand phits thit the phits phits thith the金属氧化物半导体的合成由于其在电子,光电子,催化和光伏电场等领域的广泛应用而引起了很大的关注。这项研究介绍了在不同的施加电压下通过两种探针电化学过程在蒸馏水中合成蒸馏水中的铜纳米颗粒(NP)。合成的氧化铜NP表现出从光到深棕色的色谱,表明蒸馏水中氧化铜的形成。利用tyndall效应的初步观察和红色激光证实了溶液的胶体性质。氧化铜增强了这些应用的效率,准确性,耐用性和响应时间。光致发光排放突出了合成氧化铜NP的半导体特性。氧化铜NP在较低的施加电压下表现出很小的量子点(QD),而较高的电压产生的尺寸较大。戒指样图案的出现表明了多晶结构,通过选定的区域电子衍射分析进一步证实了多晶的结构,从而证实了在低压下Cu 2 O的结晶结构,在较高的电压下证实了CUO。因此,这项研究证明了使用两种探针电化学过程合成氧化铜的直接方法,并通过调节施加的电压来产生QD和NP结构。(2024年10月14日收到; 2025年1月8日接受)关键词:氧化铜,电化学过程,纳米颗粒,量子点1.引入具有显着导电性能的金属氧化物半导体(MOS)已被广泛研究用于不同的应用。氧化铜是一种特别有趣的MOS,通常在各种领域中使用,包括传感器,催化剂,导电材料,水纯化系统,能源储能,抗菌剂和光伏电源[1]。但是,传统制备的氧化铜的粒径相对较大,在控制特定特性方面面临着挑战。减少纳米结构材料的大小为