非导电聚合物基质可能会通过阻断酶和电极活性位点之间的生物电子转移机制来影响DET过程。[8]在这种情况下,已对聚苯胺,聚吡咯和聚噻吩等导电聚合物进行了深入研究,以固定酶,以增加生物传感器中酶的催化活性和生物燃料的产生。[9,10]多吡咯(PPY)在低氧化潜力和中性pH值下在生物相容性环境下在生物相容性环境下在生物相容性环境下在生物相容性条件下特别引起了人们的注意。[11-13]除了其良好的电导率外,电化学合成的PPY膜还具有吸引人的特征,其对公共电极表面的粘附很高。[13]
钌化合物具有相对八面体几何结构,并且 R ug 复合物往往比相关的 R um 和 (IV) 复合物更具生物惰性。复合物的氧化还原电位可以通过改变配体来改变。在生物系统中,谷胱甘肽、抗坏血酸和单电子转移蛋白能够还原 Ru(IIl) 和 R um ,而分子氧和细胞色素氧化酶容易氧化 Rum。钌化合物的氧化还原电位可用于提高临床药物的有效性。例如,药物可以作为相对惰性的 Ru(I1I) 复合物施用,这些复合物通过患病组织中的还原而激活。在许多情况下,与癌症和微生物感染相关的代谢改变导致这些组织中的氧浓度低于健康组织,从而促进还原环境。已知癌细胞具有较高水平的谷胱甘肽和
Mukamel教授的群体兴趣集中在新型超快多维相干光谱方案的设计上,用于在凝结相中探测和控制电子和振动分子动力学;理论和计算研究和应用包括分子的非线性X射线光谱;光学和光子材料的多体理论;用于计算电子激发和共轭聚合物,分子纳米结构,发色团聚集体以及半导体和太阳能电池纳米颗粒的非线性光谱的时间依赖性密度矩阵框架;蛋白质和DNA中的折叠和动态波动;远程电子转移,能量漏斗和集体非线性光学响应的生物光收集复合物;单分子光谱中的光子统计;量子和经典光学响应中的非线性动力学和波动。
手性在确定供体受体分子中光诱导电子转移的自旋动力学中的作用仍然是一个悬而未决的问题。尽管在与底物结合的分子中已经证明了手性诱导的自旋选择性(CISS),但有关该过程是否影响分子本身中的自旋动力学的实验信息。在这里,我们使用时间分辨的电子顺磁共振光谱表明,CISS强烈影响分离的共价供体 - 手持桥接器(D-Bχ-A)分子的25种自旋动力学,D的选择性光添加了D之后是两个快速的,顺序的电子转移事件,从而产生了D•+ -b-a• - • - •-a•-a• -利用这种现象提供了使用手性分子构建块来控制量子信息应用中电子自旋状态的可能性。30
电解质是每个电化学设备中必不可少的组件,包括锂离子电池和钠离子电池。它物理地将两个电极与直接电子转移分离,同时允许工作离子运输电荷和质量,以确保细胞反应可持续发展。电解质也是电池中最独特的组件,因为它与其他所有组件都将其物理接口。因此,电解质在确定能量密度,功率密度,日历和周期寿命以及电池安全性能方面起着至关重要的作用。在本期特刊中,我们非常欢迎提交与液体,凝胶和固态电解质进展相关的主题的原始研究文章和评论。感兴趣的主题包括但不限于以下内容: - 基于LI/NA的电池的电解质开发; - 固态电解质;非水电解质; - 电解质/电极界面; - 新盐,溶剂或
半导体是在照明下与光发射二极管(LED)或其他光源产生的人造光合成的精细有机分子合成的。[3-5]无论尺度及其介导的反应如何,从非常一般的角度来看,光催化剂都可以通过光诱导的电子转移(PET)从一种试剂流动到另一种试剂,如图1所示。Assuming that a reaction mixture is composed of an n-type semiconductor that has a potential of the valence band ( E VB , V vs reference electrode (RE)) more positive than the oxidation potential of the electron donor ( E (D • + /D), V vs RE) and a potential of the conduction band ( E CB , V vs RE) more negative than the reduction potential of the electron acceptor ( E (A/A • − ),v vs re),相应PET的驱动力(δg0,eV)可以通过公式表示[6,7]
摘要:钾离子电池(PIBS)被认为是后矿物离子电池时代的有前途的候选人。到目前为止,已经将大量材料用作PIB的电极材料,其中钒氧化物具有很大的潜力。钒氧化物可以在电化学反应期间提供多个电子转移,因为钒具有多种氧化态。同时,它们相对较低的成本以及优越的材料,结构和理化特性赋予了他们强大的竞争力。尽管已经取得了一些鼓舞人心的研究结果,但仍有许多挑战有待进一步解决。在此,我们系统地总结了PIB的钒牛味的研究进度。然后,引入了材料特性和电化学性能的可行改进策略。最后,讨论了现有的挑战和观点,以促进钒氧化物的发展并加速其实际应用。
结果和讨论的底层纳米生成剂通过触发电气和静电诱导产生电力。接触电气是指在接触中的两个不同序列之间的电子转移,因为原子是如此近。在摩擦电气化后产生一个电子场,电静电诱导是由电场引起的。teng的电荷流如图1所示。当两种摩擦材料相互接触时,表面会产生不同的电荷。分离时,上表面电极的感应电子将流到下表面电极,形成电流流。当两个摩擦式配置接近时,下表面上的电极的电子将流回到上表面的电极,形成向下的电流,直到两个扭矩电力材料相互接触。
电子商务应用程序本质上是旨在优化用户交互的网站。无论是网站还是网络应用程序,电子商务都指在互联网上销售商品或服务。该系统涉及两方或多方之间的资金和数据电子转移。在过去十年中,在网络和手机应用程序以及在线支付系统的改进的支持下,数字技术的稳步改进和复杂化,已导致电子商务现已超过面对面的销售交易 1 。数据显示,自 COVID-19 爆发以来,该行业出现了飙升。例如,美国的在线销售额分别从 2018 年和 2019 年的 5190 亿美元和 5980 亿美元呈指数级增长,到 2020 年达到 7917 亿美元 2 。根据麦肯锡的一份报告,自 2020 年以来,20% 至 30% 的企业已转移到线上 3 。
抗臭氧剂是能够阻碍或减缓臭氧诱导降解的物质。臭氧自然存在于空气中,浓度极低,具有高反应性,尤其对不饱和聚合物反应剧烈,会导致臭氧裂解。臭氧分解需要一类独特的抗氧化稳定剂,通常以对苯二胺为基础。这些抗臭氧剂与臭氧的反应速度比臭氧与聚合物中易受损伤的官能团(通常是烯烃基团)的反应速度更快。它们之所以能做到这一点,是因为它们具有较低的电离能,能够通过电子转移与臭氧结合。这种转变会产生自由基阳离子,并通过芳香性进行稳定。这些物质保持活性并继续反应,生成1,4-苯醌、苯二胺二聚体和氨氧基自由基等产物[66- 67]。