摘要。这项工作旨在强调与在高等教育机构中创建“智能”微电子计算机科学课程相关的问题。创建的“智能”计算机科学教室是一个完全自动化的教育环境,其运行模式为“标准”、“自动”、“自动省电”。 “Samrt”机柜可以通过智能手机、PC 和遥控器进行控制。机柜配备了基于 ArduinoUNO、MEGA 和 ESP8266-12E WiFi 模块的各种传感器、指示器和电子零件。内置“智能”办公室传感器和指示器的测量用于显示有关办公室和教室微气候状态的信息,用于演示演示和实验室工作。智能机柜专为 Iformatics 设计,由三个模块组成:“信息”、“执行”和“演示”,由 ATMEL 微控制器控制。演示模块旨在快速轻松地连接无焊板的各种传感器和组件。Arduino 开放式编程平台。计算机科学教室中的智能传感器可以监控教室内外的环境(温度、湿度、压力、光照水平、空气中的二氧化碳和其他气体水平);并远程控制外围设备:电视、投影仪、灯、电源插座、窗帘。所有三个模块都连接到无线局域网。基于每个模块的无线电通信的“星型”拓扑。系统的主要组件是具有互联网接入、设备、技术和软件工具的执行模块。技术教育机构教育系统的概述解决了以下问题:在高等教育机构中创建“智能”计算机科学教室。
辐射硬度保证相关的列表19500年军事绩效规格,半导体设备的一般规范。(http://www.dscc.dla.mil/programs/milspec/listdocs.asp?basicdoc=mil-prf-19500)38510,微电路的一般规范。(http://www.dscc.dla.mil/programs/milspec/listdocs.asp?basicdoc=mil-m-38510)38534,混合微电路的性能规范。(http://www.dscc.dla.mil/programs/milspec/listdocs.asp?basicdoc=mil-prf-38534)38535,集成电路(microcircuits)制造的一般规格。(http://www.dscc.dla.mil/programs/milspec/listdocs.asp?basicdoc=mil-prf-38535)军事手册814,电离剂量和中子剂量和中子剂量的微电路和半管路设备的准则。(http://www.dscc.dla.mil/programs/milspec/listdocs.asp?basicdoc=mil-hdbk-814)815,剂量率ha指南。(http://www.dscc.dla.mil/programs/milspec/listdocs.asp?basicdoc=mil-HDBK-815)816,《开发辐射硬度硬度可确保的设备规格的指南》。(http://www.dscc.dla.mil/programs/milspec/listdocs.asp?basicdoc=mil-HDBK-816)817,系统开发辐射硬度硬度保证。MILITARY TEST METHODS IN MIL-STD-750 (Test Methods for Semiconductor Devices, http://www.dscc.dla.mil/Programs/MilSpec/listdocs.asp?BasicDoc=MIL-STD-750 ): 1017, Neutron Irradiation Procedure(http://www.dscc.dla.mil/programs/milspec/listdocs.asp?basicdoc=mil-HDBK-817)339,定制的大型集成电路开发和空间汽车的收购((( http://combatindex.com/mil_docs/pdf/pdf/hopper/mil-hdbk/ci-339-mh-9849-9849-0284.pdf)1547,电子零件,材料和流程,用于太空和发射工具,((( http://ax.losangeles.af.mil/se_revitalization/aa_functions/parts/attachments/1547c.doc)1766,ICBM武器系统和空间系统的核硬度和生存计划指南。
第五代(5G)通信时代呼唤技术革命,为我们的生活带来新变化。在材料工程领域,人们正在付出巨大努力来开发高性能的新型功能材料[1-3]。例如,开发低介电常数的电子材料对于防止5G频率的干扰至关重要[4,5]。然而,在很多情况下,降低介电常数会导致材料物理性能的下降[6]。液晶聚合物(LCP)由于其独特的分子结构而具有相对较低的粘度,并且可以借助传统的制造方法进行熔融加工[7-9]。此外,它还表现出优异的物理性能,例如高机械强度、低成型收缩率、从低温到高温的高冲击强度以及优异的耐热性[10-12]。由于这些特性,它主要用于微连接器和集成电路(IC)器件等电子零件[13-15]。然而,由于其具有高度的各向异性,因此很可能会发生较大的变形和翘曲。因此,LCP 复合材料需要采用一些增强材料,如玻璃纤维和滑石粉 [16, 17]。玻璃微胶囊是含有大量空气的空心玻璃微球 [18]。当它们嵌入到各种聚合物中时,可以减轻零件的重量 [19]。此外,它们还具有优异的绝缘性能和电阻 [20, 21]。因此,它们可以取代典型的工程填料 [22],如二氧化硅、碳酸钙和粘土。众所周知,空气的介电常数极低。这表明玻璃微胶囊内的空气有助于降低介电常数并提高物理性能 [23, 24]。海泡石是一种与玻璃纤维类似的水合硅酸镁晶须 [25, 26]。玻璃纤维的直径通常小于 10 微米 [27],而海泡石的直径为几纳米 [28]。在这方面,少量的海泡石可以产生非常积极的效果,以增强物理性能 [29]。在本研究中,我们利用挤出法制造了嵌入 LCP 复合材料中的海泡石和玻璃微胶囊
1. 目的。本多功能指令符合国防部指令 (DoDD) 5105.64“国防合同管理局 (DCMA)”(参考文献 (a));国防部指令 (DoDI) 4140.67“国防部假冒预防政策”(参考文献 (b));DCMA-INST 501“政策出版物计划”(参考文献 (c));以及列出的所有参考文献中的授权。本指令:a. 制定 DCMA 政策,分配职责,并为所有 DCMA 职能部门提供程序,监督承包商的流程,防止在客户的供应链中引入假冒材料,包括“2012 财政年度国防授权法案 (NDAA)”第 818 条、公法 112-81 规定的特殊要求(参考文献 (d))。虽然公法 112-81 第 818 条(参考文献 (d))重点关注电子零件,但本指令中概述的流程适用于任何存在假冒威胁的材料。b. 为 DCMA 客户(例如国防部、美国国家航空航天局 (NASA))、供应链中承包商的假冒缓解流程的监视提供指导。c. 分配监督、监视和检测责任,以减轻将假冒物资引入 DCMA 客户供应链的风险,从而对人员安全和任务保证构成威胁。2. 适用性。本多功能指令适用于所有执行政府合同管理和监视活动的 DCMA 人员。具有独特监视要求的 DCMA 职能部门应维护并遵循符合本指令意图的补充指令。高度敏感、机密、密码和情报项目和计划的监督和管理应在切实可行的范围内遵循本指令。 3. 管理人员内部控制计划。本指令须根据 DCMA-INST 710“管理人员内部控制计划”(参考 (e))进行评估和测试。防伪政策流程图和关键控制位于资源网页。4. 可发布性 – 无限制。本指令已获准公开发布。
“我们很高兴与高效AI Technologies的领导者Edgecortix合作,” Ispace的创始人兼首席执行官Takeshi Hakamada说。“我们相信我们可以共同努力,我们可以开发和改善Cislunar环境的技术,从而克服月球上发现的挑战。” Edgecortix的首席执行官兼创始人Sakyasingha Dasgupta说:“我们很高兴与ISPACE合作制定一项战略计划,以将我们的Sakura-II AI特异性处理器整合到Cislunar Systems中。”“空间是边缘计算的最终边界,我们渴望支持ISPACE的使命,以增强AI任务期间AI工作量的智力,效率和有效性。” 1月,Edgecortix宣布,NASA认为其Sakura-I AI ACELERATOR平台适合于包括在地球轨道和月球表面在内的太空任务,表现出较高的辐射弹性,并证明其技术。NASA电子零件和包装程序(NEPP)在Edgecortix的AI加速器上执行了两个测试阶段,使其受到质子和重离子辐射的影响,以评估其在太空样环境中承受辐射影响的能力。委托NEPP测试计划促进了实现太空自主权的目标。目前,ISPACE正在积极操作SMBC X Hakuto-R Venture Moon Mission 2,在其低能量,高效的轨迹中返回有价值的数据到月球。弹性Lunar Lander在2025年2月15日成功完成了月球飞越,到达其最接近的点,于2025年2月14日22:43 UTC。未来的任务Ispace通过其在日本,美国和卢森堡的三个业务部门利用其全球影响力,以同时发展即将到来的任务。Mission 2,由2025年1月15日发射的Ispace Japan领导,由弹性Lunar Lander发行,于2025年2月15日完成了Lunar Flyby,目前正登上月球。在任务期间,顽强的微型流浪者将部署在月球表面上,以对月球表面进行雷果石提取以及迁移率进行技术证明。Mission 3,首次亮相Apex 1.0 Lunar Lander,由Ispace-U.S领导。并预计将于2026年推出。该公司的第四任任务(将使用目前在日本设计的3系列Lander)计划于2027年推出。
简介 本文档的版权归 NEC LCD Technologies, Ltd.(以下简称“NEC”)所有。未经 NEC 事先书面同意,不得使用、复制或复印本文档的任何部分。NEC 不会承担因使用本文所述产品而产生的或与之相关的任何第三方专利、版权或其他知识产权的侵权责任,除非直接归因于其机制和工艺。NEC 不授予任何专利、版权或其他知识产权的明示或暗示许可。某些电子零件/组件会以一定的速率发生故障或失灵。尽管 NEC 尽一切努力提高产品的可靠性,但可能无法完全避免发生故障和失灵的可能性。为防止由此引起或与之相关的死亡、人身伤害或其他财产损失的风险,要求每个客户在其安全设计和计划中采取足够的措施,包括但不限于冗余系统、防火和防故障。产品分为三个质量等级:“标准”、“特殊”和“特定”三个等级,客户可选择最高质量保证计划等级。每个质量等级均针对下述应用而设计。任何打算将产品用于标准质量等级以外的应用的客户都需要提前联系 NEC 销售代表。标准质量等级适用于根据 NEC 标准质量保证计划开发、设计和制造的产品,这些产品的设计应用范围是,客户使用的产品(套装)或其所包含的零件/组件的任何故障或故障都不会直接或间接造成死亡、人身伤害或其他财产损失,如一般电子设备。示例:计算机、办公自动化设备、通信设备、测试和测量设备、音频和视频设备、家用电器、机床、个人电子设备、工业机器人等。示例:运输设备控制系统(汽车、火车、轮船等)、交通控制系统、防灾系统、反犯罪系统、非专门为生命支持而设计的医疗设备、安全设备等。除非本文件另有规定,否则该产品的质量等级为“标准”。特殊质量等级适用于按照比标准更严格的 NEC 质量保证程序开发、设计和制造的产品,这些产品的设计用途是,客户使用的产品(套装)或其所包含的零件/部件的任何故障或故障可能直接导致死亡、人身伤害或其他财产损失,或在比标准质量等级定义的更恶劣条件下使用而不会造成此类直接损害。特定质量等级适用于按照客户指定的标准或质量保证程序开发、设计和制造的产品,客户对此类产品的可靠性和质量要求极高。例如:军事系统、飞机控制设备、航空航天设备、核反应堆控制系统、医疗设备/装置/生命支持系统等。
16.摘要 本报告提供了多年努力的背景、动机和结果,旨在了解和开发一个框架来解决商用现货 (COTS) 电子系统中使用的可靠性预测方法中的差距。将 COTS 电子设备集成到航空电子系统中具有更大的计算能力优势,从而可以实现卓越的飞行导航、跟踪、制导和通信处理能力,以及更卓越的电子显示器、地图和复杂的处理算法。由于制造量大,使用 COTS 电子设备具有质量更好的优势。然而,随着特征尺寸缩小到深亚微米级,COTS 的缩放引入了半导体寿命有限的问题,因为对不同类型的故障机制的敏感性越来越高。过时的可靠性预测方法无法模拟这些新技术或充分支持可靠的航空航天系统设计。最广泛使用的组件可靠性预测手册 MIL-HDBK-217 的最后一次发布更新是在 1995 年。2009 年,成立了一个由政府和行业组织组成的工作组来修订该手册。MIL-HDBK-217 修订版 G 于 2010 年 5 月完成,并将进行协调的政府行业审查。修订版 G 的发布被国防标准化计划办公室搁置,自 2010 年完成以来一直处于搁置状态。政府在研发方面的支出普遍削减,使得重新修订 MIL-HDBK-217 的前景变得遥不可及。2011 年,航空飞行器系统研究所 (AVSI) 的可靠性路线图项目 (支出授权 [AFE] 74) 确定了当前可靠性预测方法中存在的差距,并建立了一种提高可靠性预测能力的方法。该路线图由行业共识确定优先级,使用质量功能部署来组织各种行业观点的输入,以满足对高可靠性电子系统的需求。在路线图中确定需求并确定优先级后,AVSI 于 2012 年启动了 AFE 80 项目,以提供满足这些需求的框架。该框架的关键要素之一是对新可靠性模型和方法进行验证、校准和确认的标准方法。AFE 80 项目发现行业、学术界和政府在处理这些步骤的方式上缺乏一致性。17.新可靠性方法的广泛接受不仅取决于技术上可靠的定义方法,还取决于严格和标准的验证方法。它寻求航空航天界关键联系人的帮助,以创建一种关于如何定义和完成验证、校准和确认的共识方法。由于当前可用的可靠性模型尚未更新为较新且经过验证的版本,开发人员将没有准确的方法来设计和管理未来电子系统的可靠性。快速变化的电子技术不断引入新的故障机制,并要求对所有类型的电子零件准确评估新的可靠性模型。集成系统的复杂性使得维护包含寿命有限组件的系统变得困难。挑战包括为寿命有限组件找到合适的替代品。组件过时促使设计用可能并不总是向后兼容的新技术替换复杂组件。这在集成和时序方面带来了新问题,并可能推动其他组件、子系统和系统的级联升级。虽然 AFE 83 的推出是为了满足半导体器件故障可靠性预测模型的实际物理需求,但运行可靠性计划 (AFE 84) 的推出,部分是为了通过应用 AFE 80 开发的验证框架来检查 AFE 83 开发的模型的验证。关键词 航空航天飞行器系统研究所、机载电子硬件、商用现货、COTS 组件、设计保证、电解电容器可靠性、基于电子的可靠性支持、环境对可靠性的影响、故障率、集成电路、集成可靠性、故障物理学、质量功能部署、可靠性分析、可靠性模型、可靠性模型校准、可靠性模型电子表格、可靠性模型验证 &