对现有科学文献的比较分析表明,基于陶瓷(Al 2 O 3 、TiO 2 、SiO 2 )及其主轴连接制成的传感器既有优点,也有缺点。采用特殊工艺方法制造的SiO2多孔材料成本高,对SO 2 、CO 2 、CO、NH 3 、CH 4 等有毒气体的灵敏度低,等效逆反应时间<10秒[1]。研究表明,由薄非晶态片状硫属玻璃(As 2 (Se 0.9 Te 0.1 ) 3 、As 2 Se 3 )制成的传感器的灵敏度取决于它们的成分,其惰性极低。主要原因是作为电子过程的体电导率变化发生得相当快[2]。另一方面,硫属化物玻璃传感器(As 4 S 3 和 As-Ge-Te)体积小、成本低、能耗低,灵敏度高 [3]。基于硫属化物 As 4 S 3 和 As-Ge-Te 玻璃薄层的电阻式传感器对丙胺 (C 3 H 7 NH 2 ) 和二氧化氮 (NO 2 ) 介质高度敏感,可成功用于监测这些介质,因为它们具有对湿度的动态响应、高恢复性和可逆性的特点 [3]。硫化物硫系玻璃(例如As-S)的波长主要在0.6~7微米范围内,而含锗(Ge)、硒(Se)、硫(S)和碲(Te)的硫系玻璃(Ge-S、Ge-Se、Ge-As-S、Ge-As-Se、Ge-As-Se)的波长更宽,光学透明度高(2~12微米),可以在相对较宽的温度范围内(200~300℃)作为更有效的光纤材料应用[4.5]。
聚合物也已成为有机热电学的潜在候选物,[7,8]有可能提供柔性,大面积和低成本的能源产生或加热 - 可吸引人的应用,例如,可穿戴能量收获,目前是传统的脆性和通常的毒性或稀有毒性或稀有层次的材料,这些材料目前是不可能的。ther- moelectric材料通过优异ZT = S2σT /κ的无量纲数进行评估,其中S,σ,T和κ分别代表塞贝克系数,电气有效性,绝对温度和热电导率。大多数连接的聚合物的特征是低κ值,从本质上有助于高ZT。通过P型共轭聚合物(例如ZT> 0.25)(PEDOT)(PEDOT)(pEDOT)等最广泛的热电研究证实了这一点。[9,10] P型和N型热电材料的性能应在任何实际应用之前彼此配对。ever,基于N型共轭聚合物的热电设备在功率因数方面仍然远低于其P型对应物(s2σ)。[11,12]因此,有效的发展
由于电解质很难进入纳米多孔还原石墨烯(RGO)电极的纳米构固定空间,因此实现了这些设备的最佳电化学性能是一个挑战。在这项工作中,在电压控制的纳米孔RGO电极的电化学激活过程中研究了界面州现象的动力学,该电化学激活在人体能力和电化学障碍方面导致电化学性能增强。原位/操作表征技术用于揭示激活过程中引入的不可逆材料变化的动力学,包括纳米孔内的离子差异和水的构成,以及含氧组的还原和RGO Interlayer距离的减少。此外,操作技术用于揭示RGO电极的复杂极化依赖性动态响应的起源。研究表明,石墨烯基平面中剩余官能团的可逆质子化/去质子化和阳离子电吸附/解吸过程控制纳米孔RGO电极的假能性能。这项工作为纳米多孔RGO电极的电化学循环过程中发生的表面化学,离子实现和脱染过程之间的复杂相互作用带来了新的了解,从而为设计基于Nanoporor rgo的高强度电极设计了新的见解。
Thi Huong Ngo、Rémi Comyn、Eric Frayssinet、Hyonju Chauveau、Sébastien Chenot 等人。具有位错簇的垂直 GaN-on-GaN 肖特基二极管的阴极发光和电学研究。《晶体生长杂志》,Elsevier,2020 年,552,第 125911 页。�10.1016/j.jcrysgro.2020.125911�。�hal- 03418915�
ueeneeg172a; UEENEEH111A; UEENEEH113A; UEENEEH116A; UEENEEH127A; UEENEEH129A; UEENEEH130A; UEENEEH131A; UEENEEH132A; UEENEEH133A; UEENEEH134A; UEENEEH138A; UEENEEJ109A; UEENEEJ111A; UEENEEJ112A; UEENEEJ113A; UEENEEJ114A; UEENEEJ115A; UEENEEJ116A; UEENEEJ117A; UEENEEJ118A; UEENEEJ119A; UEENEEJ120A; UEENEEJ121A; UEENEEJ122A; UEENEEJ123A; UEENEEJ124A; UEENEEJ125A; UEENEEJ126A; UEENEEJ127A; UEENEEJ128A; UEENEEJ129A; UEENEEJ130A; UEENEEJ131A; UEENEEJ132A; UEENEEJ133A; UEENEEJ134A; UEENEEJ135A; UEENEEJ136A; UEENEEJ137A; UEENEEJ138A; UEENEEJ139A; UEENEEJ141A; UEENEEJ142A; UEENEEJ143A; UEENEEJ144A; UEENEEJ145A; UEENEEJ146A; UEENEEJ147A; UEENEEJ148A; UEENEEJ149A; UEENEEJ151A; UEENEEJ153A; UEENEEJ154A; UEENEEJ155A; UEENEEJ156A; UEENEEJ157A; UEENEEJ158A; UEENEEJ159A; UEENEEJ161A; UEENEEJ164A; UEENEEJ165A; UEENEEJ166A; UEENEEJ167A; UEENEEJ170A; UEENEEJ171A; UEENEEJ173A; UEENEEJ175A;
Axel Rouviller、Moussa Mezhoud、Alex Misiak、Meiling Zhang、Nicolas Chery 等人。磁控溅射生长的钒酸锶薄膜的结构、电学和光学特性。ACS Applied Electronic Materials,印刷中,6 (2),第 1318-1329 页。�10.1021/acsaelm.3c01642�。�hal-04400444�
静电能通常是量子纳米电子系统中最大的能量尺度。然而,在理论工作或数值模拟中,静电场也经常被视为外部势能,这可能会导致错误的物理图像。开发能够正确处理静电及其与量子力学相互作用的数值工具对于理解半导体或石墨烯等材料中的量子器件至关重要。本论文致力于自洽量子静电问题。这个问题(也称为泊松-薛定谔)在状态密度随能量快速变化的情况下非常困难。在低温下,这些波动使问题高度非线性,从而使迭代方案非常不稳定。在本论文中,我们提出了一种稳定的算法,可以以可控的精度为该问题提供解决方案。该技术本质上是收敛的,包括在高度非线性的范围内。因此,它为量子纳米电子器件的传输特性的预测建模提供了可行的途径。我们通过计算量子点接触几何的微分电导来说明我们的方法。我们还重新讨论了整数量子霍尔区域中可压缩和不可压缩条纹的问题。我们的计算表明,在中等磁场中存在一种新的“混合”相,它将低场相与高场条纹分开。在第二部分中,我们构建了一个理论来描述可以在二维电子气体中激发的集体激发(等离子体)的传播。我们的理论在一维上简化为 Luttinger 液体,可以直接与微观量子静电问题联系起来,使我们能够做出不受任何自由参数影响的预测。我们讨论了最近在格勒诺布尔进行的实验,旨在展示电子飞行量子比特。我们发现我们的理论与实验数据在数量上一致。
活动 给学生工作表 2a – 供给与需求。使用教学幻灯片 - 供给与需求中的信息,学生将创建一个显示虚构城镇的电力需求的条形图,并解释为什么电力需求全天都在变化。他们将在图表上绘制点来显示太阳能电池板可以产生多少电量,然后提出其他可以帮助满足电力需求的技术建议。 扩展 给学生工作表 2b – 供给与需求扩展。继续使用教学幻灯片 - 供给与需求,学生将计算如果安装了太阳能电池板,虚构城镇仍需要多少电力。学生还将被要求计算使用太阳能电池板产生的电力可能会被浪费多少。他们将被要求解释为什么城镇和国家使用多种可再生技术发电很重要。 全体会议 引导全班讨论以下与可再生能源和满足电力需求有关的问题。 问:什么时候风力涡轮机不能发电? 答:当风很少的时候。问:什么时候太阳能电池板无法发电?答:晚上。太阳能电池板在阴天时仍能发电,只是发电量不如晴天那么多。问:为什么你认为未来能源结构很重要,而不是只依赖一种方法来发电?答:如果我们依赖一种技术,有时这种技术可能无法满足需求,例如太阳能电池板。问:有些公司已经开发出大型电池,可以安装在英国各地,以储存可再生能源产生的多余电力。安装这些电池有什么用?答:当技术本身产生的电力不足时,可以使用储存的电力,例如风力涡轮机。这意味着当可再生能源无法满足需求时,我们不需要依赖化石燃料来满足需求。
摘要。金属卤化物钙钛矿材料在钙钛矿太阳能电池和发光二极管中迅速前进,这是由于其优质的光电特性。钙钛矿光电设备的结构包括钙钛矿活动层,电子传输层和孔传输层。这表明优化过程随着复杂的化学结晶过程和复杂的物理机制之间的复杂相互作用而展开。钙钛矿光电学中的传统研究主要取决于试验和错误实验,这是一种效率较低的方法。最近,机器学习的出现(ML)已大大简化了优化过程。由于其强大的数据处理能力,ML在发现潜在模式和做出预测方面具有显着优势。更重要的是,ML可以揭示数据中的潜在模式并阐明复杂的设备机制,从而在增强设备性能中起关键作用。我们提出了将ML应用于Perovskite光电设备的最新进步,涵盖了钙钛矿活动层,传输层,接口工程和机制。此外,它还为未来的发展提供了预期的前景。我们认为,ML的深层整合将大大加快钙钛矿光电设备性能的全面增强。