随着对环境压力的增加以及旨在减少运输碳足迹的监管框架和政策,数据驱动的解决方案越来越多地被部署。这与容器运输尤其重要,因为它具有固有的固定衬里服务,与整体成本结构中的燃料成本相关,还与总体容量扩张和严重的外源性影响的趋势相关,这会导致供应链中断。本文介绍了碳排放指数(CEI)的方法论背景,该工具是测量全球容器运输公司的CO 2排放,并验证可用容器贸易路线之间变化的动态。对算法中使用的指标和操作变量进行了全面的系统分析,并概述了使用选定的容器贸易路线对CEI强度和动态的实际应用。这项研究的结果突出了数字化在衡量容器公司的碳足迹方面的作用,以及通过运输中的索引报告环境绩效的重要性,这是绩效指标的一部分。
该项目是由美国能源部国家能源技术实验室资助的部分,部分是通过现场支持合同资助的。美国政府,其任何机构,其任何雇员,支持承包商,或其任何雇员既不对任何信息,设备,产品或程序所披露的任何法律责任或责任,或承担任何法律责任或责任,或者承担任何法律责任或责任,或者表示其使用均不将使用其使用,或者代表其使用不会侵权私人权利。在此引用以商业名称,商标,制造商或其他方式参考任何特定的商业产品,流程或服务。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
关键字:制造产量,MMIC,MIM电容器,压力,摘要这项工作的目的是观察和分析MIM电容器结构中的应变相关效应,从而导致制造产量的降解。我们的结果表明,形成MIM结构的层之间的应变差会导致SIN X绝缘子层中应力诱导的缺陷。可以观察到这些缺陷,当MIM结构的面积 /电容增加时,它们成为一个显着的屈服限制。根据我们的技术,我们提出了一些过程和设计修改,以解决与压力相关的问题。测试了每种方法,并提出了产生的产量。ntroduction 用于金属构造仪(MIM)电容器的单片微波集成电路(MMIC)模具。 在高效放大器的现代设计中,MIM结构的数量和大小增加。 另一方面,据报道,集成的MIM电容器是导致2009年至2016年期间客户回报的失败机制的10个主要原因之一[1]。 因此,所有元素的累积产量,尤其是MIM电容器,应保持最高水平,以维持可靠的技术和低成本。 我们以前研究了电容器底部电极对MIM电容器产量的粗糙度的影响[2]。 此类缺陷是最明显的,并且相对容易通过光学检查检测。 可以使用适当的金属化技术和高级MIM层结构来减轻它们(例如,见图 [1]的5个)。用于金属构造仪(MIM)电容器的单片微波集成电路(MMIC)模具。在高效放大器的现代设计中,MIM结构的数量和大小增加。另一方面,据报道,集成的MIM电容器是导致2009年至2016年期间客户回报的失败机制的10个主要原因之一[1]。因此,所有元素的累积产量,尤其是MIM电容器,应保持最高水平,以维持可靠的技术和低成本。我们以前研究了电容器底部电极对MIM电容器产量的粗糙度的影响[2]。此类缺陷是最明显的,并且相对容易通过光学检查检测。可以使用适当的金属化技术和高级MIM层结构来减轻它们(例如,见图[1]的5个)。从我们的优化工作中,降低MIM电容器产量的原因如下:用于MIM结构的介电(SIN X)的材料特性和质量,底部电极的表面质量,由于夹层MIM结构而导致的热和/或机械应力相关问题。在这项工作中,我们提出了基于SIN X的MIMS的设计修改,以减少与热 /机械应力引起的绝缘体菌株相关的电容器故障。
超级电容器和晶体管是将来电子设备的两个关键设备,必须结合可移植性,高性能,易于可伸缩性等。与石墨烯相关的材料(GRM)经常被选为这些应用的活性材料,因为它们的独特物理特性可通过化学功能化来调整。最新的GRM中,只有减少的石墨烯(RGO)在温和培养基中显示出足够的多功能性和加工性,使其适合在这两种类型的设备中集成。在这里,提供了RGO的声音替代方案,即石墨烯乙酸(GAA),其物理化学特征具有特定的优势。尤其是,在锌混合超级电容器(ZN-HSC)中使用基于GAA的阴极的最先进的重力电容为≈400f g-1的当前密度为0.05 a g-1。相反,基于GAA的LGT支持SI/SIO 2,在0.1 M NaCl中显示出双极行为,其特征是由DIRAC电压高于100 mV的清晰p掺杂。这种设备在纸张流体中成功实现,从而证明了实时监控的可行性。
还原的石墨烯(RGO)是一种广泛研究的电极材料,用于储能,但是,其在化学还原过程中的强大重新组合趋势始终导致特定的表面积降解,从而限制了其性能。因此,有必要在还原过程中控制RGO的形态。在这里,我们开发了一种基于原位的基于原位的基于氧化石墨烯(GO)的方法,该方法使用绿色和有效的维生素C(VC)水溶液作为还原剂。获得的电极材料(通过基于膜的方法,VG-M的维生素C减少GO,VG-M)表现出174 f/g在1 A/G时的特异性电容,在40 A/G时保留的75.9%的保留率为75.9%,这是从传统方法中(通过搅拌方法降低VIVAMIN C降低的VIVAMIN C降低)的高度自堆叠材料(VG-S)。这种设计的方法成功地通过GO膜中的层状限制来实现RGO表形态的维护,并为两维(2D)材料形态控制提供了一种简单的方法。
气候变化是当今全球问题。气候变化的主要原因之一是温室气体,自工业革命以来,其数量一直在增加(Clabeaux等,2020;Coşkun&Doğan,2021年)。据指出,对温室气体排放贡献最大的活动是私人部门(铁或钢的生产和水泥熟料的生产等。),众所周知,诸如焚化厂和水处理厂等公共设施释放了大量的温室气体(Bani Shahabadi等,2009)。最近,众所周知,水处理厂消耗了大量的电力和化学物质,导致了大量的CO 2排放(Rothausen&Conway,2011年)。尽管饮用水处理厂的CH 4和N 2 O比废水处理厂的排放量要小得多,但每年的温室气体排放量不能忽略(Kyung等,2013)。在不久的将来,治疗厂可能会严格受到方案的监管和控制。因此,必须迅速减少水处理厂的CO 2排放。
可穿戴光电容积描记法传感器中先进材料的制造、特性和应用的系统评价 Mathew, J., Zheng, D., Xu, J. 和 Liu, H. 已发布 PDF 并存放在考文垂大学的资料库中 原始引用:Mathew, J, Zheng, D, Xu, J 和 Liu, H 2024, 《可穿戴光电容积描记法传感器中先进材料的制造、特性和应用的系统评价》,先进电子材料,卷(印刷中),2300765,页(印刷中)。 https://dx.doi.org/10.1002/aelm.202300765 DOI 10.1002/aelm.202300765 ISSN 2199-160X ESSN 2199-160X 出版商:Wiley 这是一篇根据知识共享署名许可条款的开放获取文章,允许在任何媒体中使用、分发和复制,只要对原始作品进行适当的引用。
摘要环保导电棉纺织品是可穿戴设备中柔性底物的有希望的替代方法,因为棉花是一种廉价的天然织物材料,并且在现代便携式电子设备中兼容,具有足够的电导率。在这项工作中,使用碳质纳米材料(例如碳纳米管(CNT))和石墨烯和额外的导电银(AG)粉末和纺织墨水的碳质纳米材料(例如碳纳米管(CNT)),通过屏幕打印方法制备了柔性导电棉电极。制备的导电棉电极以及较高的质量负载(20-30 mg cm -2)表现出较低的板电阻(<10Ω)。在制备的棉电极的性能下,成功制造了全纤维状态的柔性超级电容器装置,该设备表现出高度特异性的677.12 MF cm -2,在0.0125macm-2时,使用AG和40%CNTOLE的电极组合物(60%),使用AG和40%Cntole)。使用不同的弯曲角度(0,30,45,45,60和90)在严重的机械变形下稳定的电化学性能稳定,并且即使在3000 CV循环后,电容保持范围即使在〜80%的情况下具有出色的环状稳定性,并且具有出色的循环稳定性。
注意:此信息通常仅是描述性的,并且不打算对任何单元和电池做出或暗示任何表示,保证或保证。单元格和电池设计/规格会经过修改,恕不另行通知。与HJBP联系以获取最新信息