1. 引言单电子隧穿 (SET) 器件提供了一种操控单个电子并以极高的精度检测这些电子运动的方法。它们对计量和基本常数的潜在影响早在 20 世纪 80 年代该领域的发展中就已被认识到。到 20 世纪 90 年代初,几种 SET 器件已证明能够检测比 e 小得多的电荷并将单个电荷从一个电极转移到另一个电极。在过去几年中,这些器件的性能已提升到基本标准和高精度测量所需的水平:SET 静电计可以在 1 Hz 带宽内检测到 ~ 10 –5 e;电子陷阱可以将单个电荷存储数小时;电子泵可以传输数亿个单个电子,不确定度约为 10 –
本期刊文章的自存档后印本版本可在林雪平大学机构知识库 (DiVA) 上找到:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174378 注意:引用本作品时,请引用原始出版物。Zheng, W., Halim, J., Etman, A., El Ghazaly, A., Rosén, J., Barsoum, M., (2021), Boosting the volumetric capacities of MoO3-x free-standing films with Ti3C2 MXene, Electrochimica Acta , 370, 137665. https://doi.org/10.1016/j.electacta.2020.137665
将铁电负电容 (NC) 集成到场效应晶体管 (FET) 中有望突破被称为玻尔兹曼暴政的功耗基本限制。然而,在非瞬态非滞后状态下实现稳定的静态负电容仍然是一项艰巨的任务。问题源于缺乏对如何利用由于域状态出现而产生的 NC 的根本起源来实现 NC FET 的理解。在这里,我们提出了一种基于铁电域的场效应晶体管的巧妙设计,具有稳定的可逆静态负电容。使用铁电电容器的电介质涂层可以实现负电容的可调性,从而极大地提高了场效应晶体管的性能。
位置路由问题(LRP)共同优化了仓库的位置和车辆的路由。研究最多的LRP变体是电容的LRP(CLRP)。这些方法通常将问题分解为位置阶段,以确定有希望的仓库配置和路由阶段,在该阶段中,解决了车辆路线问题以评估先前确定的仓库配置的质量。不幸的是,CLRP文献并没有太多阐明算法特征对这种启发式方法的解决方案质量和运行时的影响最大的重要问题。本文的目的是为CLRP提出一种简单(但相当有效的)启发式启发式启发式方法,并就此问题的成功元启发式设计设计一些见解。我们的算法是一种混合组合(i)使用可变邻居下降的抓地力阶段,用于位置阶段的局部改进,(ii)在路由阶段进行可变的邻域搜索。我们分析了算法组件对溶液质量和运行时的影响。此外,我们发现,用于评估趋势中研究的仓库配置质量的次优路由解决方案导致与太多的开放仓库相结合。我们提出了一个减轻此缺点的仓库配置阶段,我们显示
摘要:MEMS传感器的不断开发和微型化总是为它们在与健康相关和医疗应用中使用的新可能性提供了新的可能性。MEMS设备在弹性系统中的应用允许更快的诊断,并显着促进医务人员的工作。MEMS加速度计构成此类系统的重要组成部分,尤其是那些用于监测失衡障碍患者的系统。此类传感器的正确设计对于收集有关患者运动的数据和确保整个系统的整体性能至关重要。本文介绍了专门用于跟踪患者运动的设备的三轴加速度计的设计和测量。它的主要重点是传感器的表征,比较不同的设计并评估包装和读取电路集成对传感器操作的影响。广泛的测试和测量结果确保了设计的加速度计正常工作,并允许在灵敏度/稳定性方面识别最佳设计。此外,仅当读数电路与MEMS传感器集成在相同的包装中时,提出的传感器作为应用加速度的函数的响应才能证明非常好的线性。
摘要在这里,我们研究了PGP-SELBOX NCFET(在负电容FET中有选择性掩埋的氧化物上的部分接地平面)对FDSOI的负电容的影响。将铁电层放置在PGP-Selbox NCFET的栅极堆栈中,以产生负电容现象。铁电(Fe)材料与介电材料相似,但在其极化特性方面存在差异。fe-HFO 2由于其足够的极化速率具有高介电能力和更好的可靠性,因此将其用作铁电材料。分析了铁电材料参数的影响,例如强制场(E C)和恢复极化(P R)对NCFET的电容匹配的影响。模拟结果表明,R PE因子是P R与E C的比率,与更好的电容匹配密切相关。另外,还探索了铁电层厚度的变化对平均亚阈值摇摆(SS)的变化。还分析了PGP-Selbox NCFET的短通道效应(V Th rolo虫和DIBL)与铁电(T FE)的厚度之间的关系。模拟结果清楚地表明,PGP-SELBOX NCFET的SCES减少了,而I OFF fdsoi NCFET上的I OFF I OFF IN I ON IN I ON IN CES。对于拟议设备的铁罗 - 电动参数的优化值,在T Fe = 5nm时发现为50 mV/十年,比FDSOI NCFET(56 mV/十年)少。
摘要 — 最近的研究表明,记忆电容设备网络为储存器计算系统提供了低功耗的理想计算平台。随机、交叉或小世界幂律 (SWPL) 结构是储存器基底计算单个任务的常见拓扑结构。然而,神经学研究表明,与不同功能相关的皮层大脑区域互连形成富俱乐部结构。这种结构允许人类大脑同时执行多项活动。到目前为止,记忆电容储存器只能执行单一任务。在这里,我们首次提出了集群网络作为记忆电容储存器同时执行多项任务。我们的结果表明,在三个任务上,集群网络分别比交叉和 SWPL 网络高出 4.1 × 、5.2 × 和 1.7 × 倍:孤立口语数字、MNIST 和 CIFAR-10。与我们之前和已发表结果中的单任务网络相比,多任务集群网络可以实现类似的准确率,分别为 MNIST、孤立口语数字和 CIFAR-10 的 86%、94.4% 和 27.9%。我们的扩展模拟表明,输入信号幅度和集群间连接都会影响集群网络的准确性。选择信号幅度和集群间链接的最佳值是获得高分类准确率和低功耗的关键。我们的结果说明了记忆电容式大脑启发集群网络的前景及其同时解决多项任务的能力。这种新颖的计算架构有可能使边缘应用程序更高效,并允许无法重新配置的系统解决多项任务。
表格列表表 2-1. 设计挑战................................................................................................................................................................ 7 表 2-2. 其他相关资料................................................................................................................................................. 7 表 3-1. 器件建议....................................................................................................................................................... 10 表 3-2. 设计挑战....................................................................................................................................................... 10 表 3-3. 相关资料....................................................................................................................................................... 10 表 4-1. 设计挑战....................................................................................................................................................... 13 表 4-2. 相关资料....................................................................................................................................................... 13 表 5-1. 器件建议....................................................................................................................................................... 17 表 5-2. 设计挑战....................................................................................................................................................... 18 表 5-3. 相关资料....................................................................................................................................................... 18
资金 - 不适用。利益冲突/竞争利益 - 不适用。数据和材料的可用性 - 不适用。代码可用性 - MATLAB的许可版本已用于生成图。作者的贡献 - 可选(不适用)。摘要:触摸模式电容压力传感器(TMCP)非常适合工业应用,在这种应用中,由于其线性,机械鲁棒性的性质和避免严格的工业条件,因此需要压力传感。这项工作提出了在凹面基材中引入凹口,以进一步提高传感器的灵敏度。小挠度模式用于对设计的设计的数学分析,并且将MATLAB用于所有软件模拟。与其他具有平坦底物的模型相比,所提出的模型的灵敏度非常高。分析和模拟在接触模式下的灵敏度显着提高。电容值饱和的压力也远高于文献中所述的设计。凹入底物双触摸模式电容压力传感器(DTMCP)的分析将有助于设计新的传感器以提高性能并评估其行为。
事实上,不同批次的材料物理性质可能会有显著差异,因为普通实验室环境不像工业或大规模环境那样受控;造成批次间差异的传统原因是使用并非专用于某一工艺的玻璃器皿、由于处理和不同供应商而导致的试剂和溶剂差异,甚至是特定实验室内不同季节或不同房间的温度和湿度差异。由于这些考虑,确定应优化哪些参数以获得理想的设备性能并不总是那么容易。为了阐明这个问题,我们在一个实验室中合成了几批次的 Ni3(HITP)2,尽可能使用相同的起始材料和溶剂,并将它们用作 KOH 水性电解质中的超级电容器电极。目标是辨别 MOF 批次的物理性质对设备性能的影响。Ni3(HITP)2 的特点是具有强烈的各向异性结构。配体由芳香族三苯单元组成,这些单元表现出很强的电子离域性,通过亚胺键(更准确地说是亚氨基半醌)与镍中心结合。配体和方平面 Ni 2+ 离子形成石墨烯状二维薄片,其堆叠形成直径约为 1.6 nm 的管状圆柱形通道。合成了三批 Ni 3 (HITP) 2 MOF,这里用 HITP_A、HITP_B 和 HITP_C 表示。它们是以之前发表的方法 8 作为合成条件的起点来制备的,然后根据 ESI 中的描述略有变化,† 产生了相同类型的 MOF 材料,但物理性质差异很大,如表 1 所示。三个样品的电导率分别跨越两个数量级,从 2·10·4 S cm 1 到 4·10·2 S cm 1 (对于 HITP_A 和 HITP_C)。通过拟合在 77 K 下测得的 N 2 吸附等温线确定的 BET 表面积相差三倍,从 260 m 2 g 1 到 825 m 2