AP1313 需要适当的输入电容来在阶跃负载瞬变期间提供电流浪涌,以防止输入电压轨下降。因为从电压源或其他大容量电容到 VIN 引脚的寄生电感限制了浪涌电流的斜率,所以寄生电感越大,输入电容就越大。超低 ESR 电容(如陶瓷芯片电容)和低 ESR 大容量电容(如固体钽电容、POSCap 和铝电解电容)都可以用作 VIN 的输入电容。对于大多数应用,建议的 VIN 输入电容至少为 10µF。但是,如果不关心输入电压的下降,输入电容可以小于 10µF。输出电容 AP1313 专门设计用于与低 ESR 陶瓷输出电容配合使用,以节省空间。建议使用电容至少为 4.7µF 且 ESR 大于 1mΩ 的陶瓷电容。大输出电容可以降低噪音并改善负载瞬态响应。图 2 显示了允许的 ESR 范围与负载电流和输出电容的关系。
最初发生(在≈297K时发生。在较低的温度(≈255k [1])下,原始的高对称性偏置 - 正直态被恢复。与此重入相变相关的对称性在冷却时不可能增加。一些观察结果表明,这会在热容量中产生局部倾角,[1,2]在降低温度时暂停熵的降低。[1]奇怪的对称性转化也发生在通量生长的钛酸钡晶体中,在该晶体中,高度有序的“ Forsbergh模式”可以首先出现,然后随后逐渐消失,因为温度单调变化。[3,4]最近,人们认为加热会导致高元元迷宫铁电域模式,以使位于较低的对称条纹阵列:一种效果分类为“反向过渡”。[5]清楚地,对称变化偶尔会以与通常所见的相反意义发生。虽然基本的热力学定律没有破坏,但这种情况是不明显的,逮捕的,值得一提的。[6]
摘要:表面钝化是一种广泛使用的技术,可减少半导体表面的复合损失。钝化层性能主要可以通过两个参数来表征:固定电荷密度(𝑄ox)和界面陷阱密度(𝐷it),它们可以从电容-电压测量(CV)中提取。在本文中,使用模拟钝化参数开发了高频电容-电压(HF-CV)曲线的模拟,以检查测量结果的可靠性。𝐷it 由两组不同的函数建模:首先,代表不同悬空键类型的高斯函数之和和应变键的指数尾部。其次,采用了由指数尾部和常数值函数之和表示的更简单的 U 形模型。使用基于晶体硅上的二氧化硅(SiO 2 /c-Si)的参考样品的实验测量来验证这些模拟。此外,还提出了一种使用简单 U 形 𝐷 it 模型拟合 HF-CV 曲线的方法。通过比较近似值和实验提取的 𝐷 it 的平均值,发现相对误差小于 0.4%。近似 𝐷 it 的常数函数表示在复合效率最高的中隙能量附近实验提取的 𝐷 it 的平均值。
1 电容单位:1 pF = 10 −12 F;1 fF = 10 −15 F;1 aF = 10 −18 F。满量程 (FS) = 8.192 pF;满量程范围 (FSR) = ±8.192 pF。2 规格未经生产测试,但由产品初始发布时的特性数据支持。3 工厂校准。绝对误差包括工厂增益校准误差、积分非线性误差和系统失调校准后的失调误差,均在 25°C 下。在不同温度下,需要对增益随温度漂移进行补偿。4 可以使用系统失调校准消除电容输入失调。系统失调校准的精度受失调校准寄存器 LSB 大小 (32 aF) 或系统电容失调校准期间的转换器 + 系统 p-p 噪声限制,以较大者为准。为了最大限度地减少转换器 + 系统噪声的影响,应使用较长的转换时间进行系统电容失调校准。系统电容失调校准范围为 ±1 pF;可以使用 CAPDAC 消除较大的失调。5 规格未经生产测试,但由设计保证。6 增益误差在 25°C 时进行工厂校准。在不同温度下,需要对增益随温度漂移进行补偿。7 必须将 VT SETUP 寄存器中的 VTCHOP 位设置为 1,以实现指定的温度传感器和电压输入性能。8 使用外部温度传感二极管 2N3906,非理想因子 n f = 1.008,连接方式如图 37 所示,总串联电阻 <100 Ω。9 满量程误差适用于正满量程和负满量程。
(1) 电气特性表值仅适用于所示温度下的工厂测试条件。因子测试条件导致器件自热非常有限,例如 TJ=TA。在 TJ>TA 的内部自热条件下,电气表中不保证参数性能。绝对最大额定值表示结温极限,超过该极限,器件可能会永久退化,无论是机械还是电气。(2) 极限由 25 摄氏度下的测试、设计或统计分析确保。工作温度范围内的极限通过使用统计质量控制 (SQC) 方法的相关性来确保。(3) 典型值表示在特性确定时确定的最可能的参数标准。实际典型值可能随时间而变化,也取决于应用和配置。典型值未经测试,不保证在出厂生产材料上有效。(4) 有效分辨率是转换器满量程范围与 RMS 测量噪声之比。(5) 未连接外部电容。5.6 I 2 C 接口电压电平
许多新兴应用中的主流介电储能技术,如可再生能源、电气化交通和先进推进系统,通常需要在恶劣的温度条件下运行。然而,在当前的聚合物介电材料和应用中,优异的电容性能和热稳定性往往是互相排斥的。在这里,我们报告了一种定制结构单元以设计高温聚合物电介质的策略。预测了由不同结构单元组合而成的聚酰亚胺衍生聚合物库,并合成了 12 种代表性聚合物用于直接实验研究。这项研究为实现在高温下具有高能量存储能力的坚固稳定的电介质所必需的决定性结构因素提供了重要的见解。我们还发现,当带隙超过临界点时,高温绝缘性能的边际效用会递减,这与这些聚合物中相邻共轭平面之间的二面角密切相关。通过实验测试优化和预测的结构,观察到在高达 250°C 的温度下能量存储增加。我们讨论了将该策略普遍应用于其他聚合物电介质以进一步提高性能的可能性。
电容去离子化是一种新兴的工业用海水淡化技术。电极设计和系统开发方面的最新进展已导致超高盐吸附性能的报道,有利于其在农业水处理中以低成本的潜在应用。在本研究中,我们全面总结了实现超高离子吸附性能的多孔电极设计策略,考虑了实验参数、化学调节的材料特性、氧化还原化学和智能纳米结构等因素,以供未来的电极设计使用。此外,我们努力建立电容去离子化 (CDI) 技术与其在农业领域的适用性之间的关联,特别是专注于水处理,重点是与盐度、硬度和重金属相关的不良离子,以实现无害灌溉。此外,为了确保 CDI 系统在农业中的高效和经济应用,我们对 CDI 成本分析的文献进行了全面概述。通过解决这些方面,我们预计超高盐吸附 CDI 系统在未来的农业应用中将大有可为。
记录的版本:此预印本的一个版本于2021年5月11日在自然通讯上发布。请参阅https://doi.org/10.1038/s41467-021-22912-8。
近几十年来,已有100,000多种科学文章专门用于开发超级电容器和电池的电极材料。但是,关于确定法拉达反应所涉及的电化学行为的标准,仍然存在激烈的争论,因为各种电子材料及其不同物理化学特性产生的电解学信号通常使问题复杂化。困难在于无法确定这些材料属于哪种电极类型(电池与伪库)。为了过分困难,我们将监督的机器学习应用于电化学形状分析(超过5500个环状电压曲线和2900个镀锌电荷电荷 - 充电 - 充电曲线),并以预测的限制百分比反映了趋势的趋势,从而将其变形为趋势,并定义为制造商。称为“电容趋势”。该预测因子不仅超越了基于人类的分类的局限性,而且还提供了有关电化学行为的统计趋势。对电化学储能社区的重要性以及每周发表一百多篇文章的部分重要性,我们创建了一个在线工具,可以轻松地对其数据进行分类。
实现对实际应用的高灵敏度一直是可穿戴柔性压力传感器的主要发育方向之一。本文引入了激光斑点灰度光刻系统和一种新的方法,用于使用颗粒状激光斑点图案制造随机锥形阵列微观结构。其可行性归因于激光斑点强度的自相关函数,该功能遵循第一类的一阶Bessel函数。通过客观的斑点尺寸和暴露剂量操纵,我们开发了具有各种微形态的微结构光蛋白天。这些微结构用于形成用于柔性电容压力传感器中的聚二甲基硅氧烷微结构电极。这些传感器表现出超高灵敏度:低压范围为0 –100 pa的19.76 kPa -1。它们的最小检测阈值为1.9 pa,它们保持稳定性和弹性超过10,000个测试周期。这些传感器被证明擅长捕获生理信号并提供触觉反馈,从而强调其实际价值。