第一个石墨烯具有商业化高级纳米材料的良好记录。该公司开发了一种电化学工艺,可实现吨位尺度的制造原始的,高度敏感的石墨烯,其典型厚度为5-10个碳层。这些具有很高的纯度,其总金属不到0.3%,较少每百万个硅污染物。通过使用复杂的整理步骤,可以仔细控制纳米板的外侧尺寸(称为Puregraph®),至5 µm,10 µm和20 µm。这些可用于显着增强油漆,涂料,聚合物和复合材料的机械,热和电气性能。
在使用陶瓷电容器和分板印刷电路板的每条电子装配线上,“挠曲裂纹”质量风险是众所周知的。不幸的是,“陶瓷电容器”中的挠曲裂纹总是延伸到电容器的金属端子下方,电气测试只能发现约 1% 的受影响部件。使用一种新方法 - 蚀刻端子并查看隐藏的裂纹 - 可以识别所有机械弯曲和翘曲的来源。在故障分析过程中,了解以下情况很有帮助:大多数时候,不仅故障的陶瓷电容器会显示裂纹模式,而且所有周围的陶瓷电容器也会显示裂纹模式。对不同裂纹模式和故障模式的充分了解还使我们能够发现 PCB 上不安全的弯曲和翘曲线。这为我们提供了如何将陶瓷电容器以最佳方向放置的指导方针,不仅要放置在分板线上,还要放置在安装和螺丝开口附近。最后,我们将回顾不同类型的陶瓷电容器,它们具有内部布局,即使出现弯曲裂纹,也能防止电路板故障。© 2015 Elsevier Ltd. 保留所有权利。
关键字:制造产量,MMIC,MIM电容器,压力,摘要这项工作的目的是观察和分析MIM电容器结构中的应变相关效应,从而导致制造产量的降解。我们的结果表明,形成MIM结构的层之间的应变差会导致SIN X绝缘子层中应力诱导的缺陷。可以观察到这些缺陷,当MIM结构的面积 /电容增加时,它们成为一个显着的屈服限制。根据我们的技术,我们提出了一些过程和设计修改,以解决与压力相关的问题。测试了每种方法,并提出了产生的产量。ntroduction 用于金属构造仪(MIM)电容器的单片微波集成电路(MMIC)模具。 在高效放大器的现代设计中,MIM结构的数量和大小增加。 另一方面,据报道,集成的MIM电容器是导致2009年至2016年期间客户回报的失败机制的10个主要原因之一[1]。 因此,所有元素的累积产量,尤其是MIM电容器,应保持最高水平,以维持可靠的技术和低成本。 我们以前研究了电容器底部电极对MIM电容器产量的粗糙度的影响[2]。 此类缺陷是最明显的,并且相对容易通过光学检查检测。 可以使用适当的金属化技术和高级MIM层结构来减轻它们(例如,见图 [1]的5个)。用于金属构造仪(MIM)电容器的单片微波集成电路(MMIC)模具。在高效放大器的现代设计中,MIM结构的数量和大小增加。另一方面,据报道,集成的MIM电容器是导致2009年至2016年期间客户回报的失败机制的10个主要原因之一[1]。因此,所有元素的累积产量,尤其是MIM电容器,应保持最高水平,以维持可靠的技术和低成本。我们以前研究了电容器底部电极对MIM电容器产量的粗糙度的影响[2]。此类缺陷是最明显的,并且相对容易通过光学检查检测。可以使用适当的金属化技术和高级MIM层结构来减轻它们(例如,见图[1]的5个)。从我们的优化工作中,降低MIM电容器产量的原因如下:用于MIM结构的介电(SIN X)的材料特性和质量,底部电极的表面质量,由于夹层MIM结构而导致的热和/或机械应力相关问题。在这项工作中,我们提出了基于SIN X的MIMS的设计修改,以减少与热 /机械应力引起的绝缘体菌株相关的电容器故障。
摘要最近,水力发电资源成为为离网净工程发电的一种有吸引力的手段,尤其是在农村地区。这项工作旨在设计能量存储系统的合适原型,该原型被称为潜在的蒸汽水电电容器。该系统提供了可管理的电力来源,并以低成本提供了可饮用的水,以替代相对较高的电池。该系统由两个太阳能收集器组成,这些太阳能收集器串联连接。第一个收集器中的工作流体是死海,在第二个淡水中,热交换器,一个连接到高柱的热托太阳能热水器将蒸气传递到高海拔高度,以及建筑物屋顶上的冷凝单元。该系统成功地在3.4 m的高度生产大量淡水。产生的势能可以运行一个小涡轮机。系统的能力,将淡水中的热能转换为势能,效率为66.7%。向系统中添加太阳能集中器会增加收集的水。
抽象 - 由于世界面临着更绿色运输的巨大需求,因为我们在车辆中使用的化石燃料是温室排放的重要贡献者。幸运的是,电动汽车(电动汽车)引起了希望的浪潮,并且我们正在远离化石燃料,并采用与化石燃料相比的混合型汽车,氢燃料电池汽车和电动汽车等更环保的选择。,但是传统的电动汽车面临着一些挑战,尤其是在电池中,例如充电速度,寿命有限,范围有限。在内燃烧车辆中也很明显这种类似的挑战(例如,汽油 /柴油 /压缩天然气)主要通过将其转换为混合系统来解决。同样,在电动汽车中,我们可以通过将其转换为混合动力汽车来解决电池寿命有限(充电周期)和低范围的车辆。因此,为了解决这个问题,我们提出了使用超级电容器辅助燃料来源以及传统的锂离子电池作为主要燃料来源的智能混合动力系统。我们将使用再生制动来收费超级电容器银行(即多个超级电容器,并通过使用桥梁整流器为超级电容器库充电,并以串行平行的组合连接,该库最终将在快速加速时为电动机提供额外的必需电流。
Jüri Raatma 法律顾问 + 20+ 年私营和公共部门法律经验 + 前爱沙尼亚财政部长、经济部长和司法部长顾问 + 曾担任 Elering、Eesti Telekom、爱沙尼亚铁路、EVR Cargo 等公司的理事会成员
本文提出了一种适用于宽频率范围的新型静电可调电容器。针对其应用,提出了完整的设计规则来设计 0.01 pF – 2.05 pF 范围内的可变电容器。根据所需的电容值,设计的电容器占用 0.03 mm 2 – 1.12 mm 2 的空间,与相关已发表的文献相比非常小。使用浮动技术来获得高品质因数。所提出的电容器的品质因数在 1.28G 至 2.78GHz 的频率范围内在 45 到 100 之间,并且可调电容器的可调谐范围为 374%。在提出完整的设计规则和相关方程后,所提出的电容器用于带有螺旋电感器的放大器电路中,并评估了所提出的电容器的性能并将其与其他电容器进行了比较。使用 COMSOL Multiphysics 进行模拟。
焊接可能对大多数表面固定技术组件的性能和可靠性产生强大的影响,包括板塔电容器。高质量的触觉电容器可能是唯一的组件类型,焊接模拟是筛选过程中的第一步。尽管如此,刺激后电容器的后焊后故障发生了,需要进行其他分析。爆米花是塑料包裹的微电路(PEM)的众所周知的效果,它也发生在芯片斜塔塔勒电容器中。焊接过程中零件对水分存在的敏感性的特征是水分灵敏度水平(MSL);但是,与PEM相反,没有用于建立触觉电容器的MSL的标准程序。尚未正确研究吸收水分对焊接相关降解和触觉降解的影响,并且尚无有关对聚合物和MNO2 tantalum tantalum Pacipitors焊接的敏感性差异的足够信息。在这项工作中,在回流焊接之前和之后,已经测试了16种类型的聚合物和9种类型的MNO2阴极斜向电容器。估算了焊接后的水分释放水平,并用于评估焊接过程中电容器变形的热机械分析。结果表明,在聚合物中,相似部分的水分吸收大约是MNO2电容器的两倍。MNO2电容器中这种故障类型与与房间条件相对应的偏差电压和相对较低的水分吸附水平也可能发生。在两种类型的零件中都可能发生案例的破裂和参数降解,但是MNO2电容器在第一个电动循环中以短路和可能的点火方式灾难性地失败。焊接前烘烤是一种有效的措施,以防止失败,即使在遭受爆炸式损坏的地段中也是如此。提出了建立MSL的烘焙和测试的建议。
摘要。2016 年 1 月 1 日,具有历史意义的联合国峰会通过了 17 项可持续发展目标 (SDG),并制定了 2030 年可持续发展议程。能源是可持续发展议程的重要组成部分,但当前的可再生能源系统面临着间歇性、电网整合挑战和能源存储效率等诸多限制。超级电容器具有高储能效率、高功率密度和资源效率,使其能够为不同的可持续发展目标做出贡献,例如与可再生能源解决方案相结合时促进清洁能源发电(可持续发展目标 7),在水处理厂等工业过程中,它可以提高能源效率,降低运营成本(可持续发展目标 6),它还可以通过提高能源效率来提高电动汽车性能,从而为可持续发展目标 11 做出贡献。考虑到超级电容器在实现可持续发展方面的不同应用,本评论文章重点介绍了超级电容器及其类型的重要性。它还回顾了电极和电解质的不同材料,并说明了除应用之外的未来范围。