零能源建设电力 - 热热双层能量优化控制方法Kong Lingguo 1,Wang Shibo 1,Cai Guowei 1,Liu Chuang 1,Guo Xiaoqiang 2
5 上海交通大学生物医学工程学院,上海,200030 【摘要】脑机接口(BCI)设备是进行神经刺激和记录的重要工具,在神经系统疾病的诊断和治疗中有着广阔的应用前景。此外,磁共振成像(MRI)是一种有效且非侵入性的全脑信号捕获技术,可以提供大脑结构和激活模式的详细信息。将BCI设备的神经刺激/记录功能与MRI的非侵入性检测功能相结合对脑功能分析具有重要意义。然而,这种结合对神经接口设备的磁和电性能提出了特定的要求。首先探讨了BCI设备与MRI之间的相互作用,随后对二者结合可能产生的安全风险进行总结和整理,从BCI设备的金属电极、导线等危害的来源入手,分析了存在的问题,并总结了目前的研究对策。最后,简要讨论了BCI磁共振安全性的监管问题,并提出了增强相关BCI设备磁共振兼容性的建议。
压力传感器在可穿戴电子设备和电子皮肤中充当核心组件时,已经获得了更广泛的市场。为了实现高性能柔性压力传感器,研究人员对传感器材料,结构和设备设计进行了创新研究。聚(3,4-乙二醇二噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)是一种广泛使用的导电聚合物,由于其异常电导率,易于处理,易于处理和生物相容性,因此引起了相当大的关注。作为一种多功能且灵活的功能,PEDOT:PSS可以将其发展为各种形式,对新兴的传感应用具有重要意义。本文概述了使用PEDOT:PSS的最新进步:用于灵活的压电传感器的PSS,同时还讨论了其在此类传感器中的应用以及用于提高其性能的方法和机制。
接口技术[j]。信号处理期刊,2023年,39 (8):1386-1398。doi:10。16798/j。ISSN。 1003-0530。 2023。ISSN。1003-0530。2023。
工程会议委员会已批准发表本文。在会议组织者的监督下,本文已成功完成 SAE 的同行评审流程。此流程至少需要三 (3) 位业内专家的评审。保留所有权利。未经 SAE 事先书面许可,不得以任何形式或任何方式(电子、机械、影印、录音或其他方式)复制、存储在检索系统中或传输本出版物的任何部分。ISSN 0148-7191 本文中提出的观点和意见均为作者的观点,不一定代表 SAE。作者对本文内容负全部责任。SAE 客户服务:电话:877-606-7323(美国和加拿大境内)电话:724-776-4970(美国境外)传真:724-776-0790 电子邮件:CustomerService@sae.org SAE 网址:http://www.sae.org
智能电网是融合了节能和可再生能源技术的电网,其实施可能需要对现有电网进行大规模重组和重新设计 [1]。然而,考虑到智能电网的推出将带来众多环境和经济效益,这些转变是重要且必要的。智能电网最大的优势之一是它为能源供应商和消费者带来了灵活性 [2]。例如,需求响应资源可以监控能源需求并支持发电机和负载之间的相互作用,以优化对能源需求的满足,而不会使电网过载 [3]。通常,这些操作会融合可再生能源,例如光伏 (PV) 板和电池储能系统 (BESS)。电动汽车 (EV) 的出现是智能电网中的另一个因素,这带来了一个有趣的挑战 [4]。
随着 Siri 和 Alexa 等对话式 AI 应用在儿童中变得无处不在,CS 教育界已开始利用这种流行度作为吸引年轻学习者学习 AI、CS 和 STEM 的潜在机会。然而,向 K-12 学习者教授对话式 AI 仍然具有挑战性且尚未得到探索,部分原因是某些对话式 AI 概念(例如意图和训练短语)具有抽象性和复杂性。一种以引人入胜的方式教授复杂主题的有前途的方法是通过非插电活动,事实证明,这种方法在不使用计算机的情况下非常有效地促进 CS 概念理解。目前正在研究开发用于教授 AI 的非插电活动,但迄今为止很少有研究关注对话式 AI。本经验报告描述了针对中学生的对话式 AI 夏令营的一系列新颖的非插电活动的设计和迭代改进。我们讨论了学习者的反应以及通过实施这些非插电活动获得的经验教训。我们希望这些见解能够支持 CS 教育研究人员使对话式 AI 学习更具吸引力并让所有学习者都能接受。
在这项工作中,我们遵循以前的途径,以探索有限差分时间域(FDTD)方法中数值分散补偿的机器学习算法。混合深神经网络通过FDTD模拟的细胞大小进行训练,目的是通过比较粗大和密集的网格的各种平面微波电路的解决方案来“学习”数值分散误差的模式。因此,我们的培训数据不仅包括广泛的几何形状,还包括每个问题的可变密度的网格。我们对所提出的网络的结构进行了详尽的分析及其误差性能作为培训数据的函数。我们评估了其充当数值分散补偿引擎的能力:可以从粗网格模拟的结果中预测fdtd模拟的结果。
建筑职业安全与健康促进协会参考:WSH 研究所。技术是改善工作场所安全与健康的推动因素。STAS-WSH 理事会工作场所安全论坛 2023。
摘要——本文介绍了采用先进功率转换技术的电动汽车 (EV) 车载充电器的设计和分析。所提出的系统具有使用图腾柱功率因数校正 (PFC) 转换器的 AC-DC 转换级和使用 LLC 谐振转换器的 DC-DC 转换级,并使用自适应神经模糊推理系统 (ANFIS) 控制器进行优化。所提出的 OBC 系统旨在提高 EV 充电系统的效率、功率密度和可靠性。图腾柱 AC-DC 转换器用于以最小的开关损耗整流交流输入,利用其固有的连续导通模式 (CCM) 运行能力并减少二极管中的反向恢复问题。整流后,LLC 谐振 DC-DC 转换器有效地将直流电压升压到适当的电池充电水平,提供零电压开关 (ZVS) 和零电流开关 (ZCS) 以提高整体效率。ANFIS 控制器结合了模糊逻辑和神经网络的优势,在不同的运行条件下提供卓越的适应性和控制精度。仿真结果表明,使用 ANFIS 后,效率、功率因数和瞬态响应显著改善。实验验证证实了基于 ANFIS 的系统的优越性,使其成为当代电动汽车充电应用的可行解决方案。索引术语 - 车载充电器 (OBC)、功率因数校正 (PFC)、电动汽车 (EV)、自适应神经模糊推理系统 (ANFIS)。