石墨烯是在二维蜂窝晶格中排列的单层碳原子,由于其出色的热和电性能,引起了人们的重大关注。其高热电导率(约5000 W/m·K)实现有效的散热,使其成为增强电子设备中热管理的理想材料。石墨烯有效地进行热的能力在各种应用中都利用,包括散布器,热界面材料和复合材料,改善了电子产品(例如处理器和LED)的性能和可靠性。除了其热益处外,石墨烯还具有非凡的电导率,电子迁移率达到200,000cm²/v·s。这种特殊的电导率是由于该材料的DELACALIGETINACTRAIGEDI-π电子和最小散射,从而显着增强了电子成分的性能。石墨烯用于导电油墨,晶体管,超级电容器和电池,推动柔性电子,高速晶体管和能量存储技术的进步。尽管有优势,但仍在大规模生产和将石墨烯集成到现有技术中的挑战。需要解决与生产成本,材料质量以及与其他物质兼容性相关的问题。正在进行的研究重点是改善合成技术和探索新的应用,并有望在各个行业中产生变革性的影响。简介石墨烯的优质热和电气性能可在热耗散和电子性能方面进行实质性改进,并可能扩大其应用并增强技术创新。
摘要 - 低成本,低功率和高效率集成系统的需求增加使设计射频(RF)模拟电路变得更加复杂。使用多指MOSFET是一种优化电路性能的有吸引力的技术。与单指MOSFET相比,它降低了硅区域,门电阻和寄生电容,这主要影响高频和噪声性能。但是,选择最佳手指数量仍然是一个具有挑战性的问题。本文研究了手指的数量(NF)对晶体管参数的影响,并评估其对RF收发器中多个关键功能的影响。该研究专门关注NF的函数,该研究在130 nm CMOS技术中实施的民用RF电路的性能。首先,提出了差异RF带通滤波器的设计。结果表明,使用多指MOSFET会导致芯片面积减少66.5%,功率消耗量增加了15%,而噪声图则减少了43%,与常规方法相比,线性性和频率范围的改善。然后,根据NF的不同配置,已经设计了一种在2.4 GHz左右运行的无电感LC-VCO和LNA。获得的结果通过应用多手指优化显示了该区域,功率增益,频率和噪声性能的改善,并表明保持NF的增加可以降低稳定性,线性和功耗。还通过蒙特卡洛模拟测试了所提出的电路,从而证实了它们的稳健性和不匹配变化。不同提议的电路和NF配置之间的详细分析比较证明,当NF较低时,MF技术是可靠的。
抽象 - 基于石墨烯的聚合物纳米复合材料吸引了广泛的工业兴趣,因为由于石墨烯的独特传导性能,该材料的电导率可以精确控制。在本文中,我们显示了去角质方法和分散时间对聚酰亚胺/石墨烯纳米复合材料的整体电导传导的影响。一组具有不同石墨烯纳米液含量的聚酰亚胺膜是通过热弹性制备的,并进行了电表征,以评估纳米复合材料对电渗透阈值的组成的影响。研究了三种分散技术(即高剪切混合,超声探针和行星混合)发现,在每种情况下,通过增加分散时间来减少石墨烯纳米叶片的尺寸。使用高剪切混合技术获得最高的分散质量,该技术产生了0.03 wt%的电渗透阈值。
石墨烯及其衍生物表现出有趣的特性(机械性能,电导和热导电性)。将其纳入聚合物矩阵时,在Elec Tronics,Medicine,Transportation等领域中可能进行了许多应用。本综述的目的是突出石墨烯如何影响聚合物纳米复合材料的电性能。第一部分解释了石墨烯的特殊结构,石墨烯是合成石墨烯的主要方法以及对电导率的影响。在第一部分中,还解释了石墨烯血小板的方向和比对如何影响单相聚合物纳米复合材料的渗透阈值或电导率。最后,在第一部分中,我们通过对石墨烯上的化学处理来提高对电性能增强的一些概括。本综述的第二部分的目的是显示将石墨烯掺入不混溶的聚合物对微结构和电气性能的影响。,我们专注于选择性定位纳米颗粒的概念:如何预测石墨烯的定位以及如何通过化学和动力学因素来量身定制定位。根据73个出版物的数据绘制了几个图,以表现出基于石墨烯的聚合物混合纳米复合材料的不同参数对电导率(S.cm -1)的影响。最后,本综述的最后一部分专门用于基于石墨烯的聚合物混合纳米复合材料的电气应用。
尽管对铁电体的尺寸效应进行了广泛的研究,但是反铁电体的结构和特性在尺寸减小的情况下如何演变仍然难以捉摸。鉴于反铁电体在高能量密度存储应用方面具有巨大潜力,了解它们的尺寸效应将为优化小尺度器件性能提供关键信息。本文研究了无铅 NaNbO 3 膜中反铁电性的基本本征尺寸依赖性。通过广泛的实验和理论方法,探究了膜厚度减小后有趣的反铁电到铁电的转变。这种尺寸效应导致 40 nm 以下的铁电单相,以及在此临界厚度以上铁电和反铁电序共存的混合相状态。此外,结果表明反铁电和铁电序是电可切换的。第一性原理计算进一步表明,观察到的转变是由膜表面引起的结构扭曲驱动的。这项工作为反铁电体中内在尺寸驱动的缩放提供了直接的实验证据,并展示了利用尺寸效应通过膜平台驱动环境无铅氧化物中的突发特性的巨大潜力。
全球对化石燃料以外替代能源资源的需求由于其消耗的耗竭和环境影响而被放大。最近的评估发现,在能源转化步骤中,全球72%的全球能源消耗损失。1,重大损失被指定为废热,需要回收以提高全球能源可持续性。因此,热电(TE)材料通过将废热转换为电力并作为无噪声和无噪声的固态冷却器来使其成为一种可持续和可靠的能源引起了极大的兴趣。2热电效率取决于功绩的无量纲热电图,ZT = A2σT /κ,其中a,σ,T和κ分别是Seebeck系数,分别是电导率,绝对温度和总导电性。3材料的热电效率可以通过
C. L APEYRONIE 1*,MS A LFONSO 1,B. VIALA 2,J.-H. T ORTAI 1 1 格勒诺布尔阿尔卑斯大学、CNRS、CEA/LETI-Minatec、格勒诺布尔 INP、格勒诺布尔阿尔卑斯大学工程与管理学院、LTM、格勒诺布尔 F-38054、法国 2 格勒诺布尔阿尔卑斯大学、CEA、LETI、38000 格勒诺布尔、法国
掺杂是提升各种有机电子器件性能的重要策略。然而,在许多情况下,共轭聚合物中掺杂剂的随机分布会导致聚合物微结构的破坏,严重限制了电子器件的可实现性能。本文表明,通过离子交换掺杂聚噻吩基 P[(3HT) 1-x -stat-(T) x ](x = 0(P1)、0.12(P2)、0.24(P3)和 0.36(P4)),无规共聚物 P3 实现了 > 400 S cm − 1 的极高电导率和 > 16 μ W m − 1 K − 2 的功率因数,使其成为有史以来报道的基于未排列的 P3HT 薄膜中最高的电导率之一,明显高于 P1(< 40 S cm − 1 、< 4 μ W m − 1 K − 2)。尽管两种聚合物在原始状态下都表现出相当的场效应晶体管空穴迁移率≈0.1 cm 2 V − 1 s − 1,但掺杂后,霍尔效应测量表明 P3 表现出高达 1.2 cm 2 V − 1 s − 1 的霍尔迁移率,明显优于 P1(0.06 cm 2 V − 1 s − 1)。GIWAXS 测量确定掺杂 P3 的平面内𝝅 – 𝝅堆叠距离为 3.44 Å,明显短于掺杂 P1(3.68 Å)。这些发现有助于解决 P3HT 中长期存在的掺杂剂诱导无序问题,并作为在高掺杂聚合物中实现快速电荷传输以实现高效电子器件的典范。
迄今为止,简单二元材料类中的铁电性 (FE) 已引起人们对其多功能应用的极大兴趣。具体而言,利用第一性原理密度泛函计算预测了岩盐氧化物中的 FE 有序性 [1]。参考文献 [2] 指出,利用外延应变确实可以在铁磁岩盐 EuO 中诱导铁电性,从而使其具有多铁性 [3]。实验上,可以通过合适基底上的晶格失配、拉伸薄膜或通过化学掺杂剂来调整应变 [4,5]。外部应变已被用于诱导新型金属-绝缘体转变 [6] 和层状氧化物中的极性-非极性转变 [7]。此外,在 c 方向施加正应变时,电场可以在最初中心对称的氧非化学计量氧化物 Gd 掺杂 CeO 2-x 中诱导化学膨胀和高压电性 [8]。
1能源材料财团(EMC),高级材料团队,离子和动力学材料研究实验室(IKMAR),科学技术学院,马来西亚伊斯兰教伊斯兰教,尼列尔71800,Negeri sembili sembilan darul khusus,马来西亚2个高级材料团队,高级材料团队,伊斯兰元素分析, U,21030吉隆坡,马来西亚Terengganu Darul Iman,3能源材料财团(EMC),Nano Energy Laboratory(NEL),科学技术学院,马来西亚大学伊斯兰大学伊斯兰教,71800 Nilai,Negeri Sembili Sembilan darul darul darul darul darul khusus,马来西亚4号陆战队马来西亚的Terengganu Darul Iman的Nerus 5化学工程技术学院,马来西亚Perlis大学(UNIMAP),UNICTI ALAM,SUNGAI CHUCHUH,02100 PADANG马来西亚玻璃市大沙 6 印度钦奈萨维塔大学 (SIMATS) 萨维塔工程学院应用物理系
