klaus schroder 6。磁性泡内存储技术,hsu chang 7。变压器和电感器设计手/书,Wm上校。T. McLyman 8。电磁学:经典和现代理论与应用,Samuel Seely和Alexander D. Poularikas 9。一维数字信号处理,Chi-Tsong Chen 10。互连动力系统,Raymond A. DeCarlo和Richard Saeks 11。现代数字控制系统,Raymond G. Jacquot 12。混合电路设计与制造,Roydn D. Jones 13。变压器和电感器的磁芯选择:练习和规范的用户指南,Wm上校。T. McLyman 14。静态和旋转的电磁设备,Richard H. Engelmann 15。节能电动机:选择和应用,John C. Andreas 16。电磁辅助性,亨氏M Schlicke 17。电子:模型,分析和系统,James G. Gottling
如今,电感模拟是一个广泛的研究课题,因为集成电路中需要无电感网络,而模拟电感可以提供更稳定、更不敏感的网络实现,研究人员正在使用不同的有源构建块(ABB)CM 或 VM 来展示电感模拟电路,需要电感模拟设计是因为盘绕电感的尺寸和体积会消耗大量的功率和能量。有源电感设计为接地电感(GI)或浮动电感(FI),它们有损或无损,无损 GI/FI 是纯电感,可以与盘绕电感完全一样使用,而有损 GI/FI 是电感和电阻/电容的串联或并联组合。滤波器和振荡器等模拟信号处理电路采用 GI 或 FI 设计,这些电感可以用有源模拟电感代替,与盘绕电感相比工作效率更高。因此,使用带有任何有源器件的 RC 网络模拟电感器已成为实现集成电路 (IC) 形式的基于电感器的电路的替代选择。
摘要 本文介绍了几种压控振荡器的物理实现和测量结果,这些振荡器采用全自动、布局和可变性感知的优化方法设计而成。该方法使用基于机器学习技术的高精度模型来表征电感器,并使用多目标优化算法来实现包含最佳电路设计的帕累托最优前沿,这些电路设计可提供不同的性能权衡。所提出方法的最终结果是一组设计解决方案(其 GDSII 描述可用且可随时制造),无需设计师进一步干预。所提出方法的两个关键要素是使用与现成模拟器和电感器模型链接的优化算法,它们可产生类似 EM 的精度,但评估时间要短得多。此外,该方法保证了对布局寄生和可变性的高水平稳健性,与专家设计师使用其可用的验证工具实现的一样。该方法独立于技术,可用于射频电路的设计。结果已通过物理原型上的实验测量进行验证。
毫特斯拉至特斯拉级别的单片强磁感应为物理、化学和医疗系统提供了基本功能。当前的设计选项受到三维 (3D) 结构构造、电流处理和磁性材料集成方面的现有能力的限制。我们在此报告通过气相自卷膜 (S-RuM) 纳米技术将大面积和相对较厚 (~100 至 250 纳米) 的 2D 纳米膜几何转换为多圈 3D 空芯微管,并结合通过毛细力对磁流体磁性材料进行后卷集成。设计和测试了蓝宝石上的数百个 S-RuM 功率电感器,最大工作频率超过 500 MHz。单个微管电感器在 10 kHz 时实现了 1.24 H 的电感,相应的面积和体积电感密度分别为 3 H/mm 2 和 23 H/mm 3 。在 10 MHz 时,在制造的器件中模拟的磁感应强度达到数十毫特斯拉。
毫特斯拉至特斯拉级别的单片强磁感应为物理、化学和医疗系统提供了基本功能。当前的设计选项受到三维 (3D) 结构构造、电流处理和磁性材料集成方面的现有能力的限制。我们在此报告通过气相自卷膜 (S-RuM) 纳米技术将大面积和相对较厚 (~100 至 250 纳米) 的 2D 纳米膜几何转换为多圈 3D 空芯微管,并结合通过毛细力对磁流体磁性材料进行后卷集成。设计和测试了蓝宝石上的数百个 S-RuM 功率电感器,最大工作频率超过 500 MHz。单个微管电感器在 10 kHz 时实现了 1.24 H 的电感,相应的面积和体积电感密度分别为 3 H/mm 2 和 23 H/mm 3 。在 10 MHz 时,在制造的器件中模拟的磁感应强度达到数十毫特斯拉。
毫特斯拉至特斯拉级别的单片强磁感应为物理、化学和医疗系统提供了基本功能。当前的设计选项受到三维 (3D) 结构构造、电流处理和磁性材料集成方面的现有能力的限制。我们在此报告通过气相自卷膜 (S-RuM) 纳米技术将大面积和相对较厚 (~100 至 250 纳米) 的 2D 纳米膜几何转换为多圈 3D 空芯微管,并结合通过毛细力对磁流体磁性材料进行后卷集成。设计和测试了蓝宝石上的数百个 S-RuM 功率电感器,最大工作频率超过 500 MHz。单个微管电感器在 10 kHz 时实现了 1.24 H 的电感,相应的面积和体积电感密度分别为 3 H/mm 2 和 23 H/mm 3 。在 10 MHz 时,在制造的器件中模拟的磁感应强度达到数十毫特斯拉。
Johanson 公司 Johanson Dielectrics, Inc. 和 Johanson Technology, Inc. 位于加利福尼亚州卡马里奥,拥有 50 多年专门从事高品质陶瓷产品设计和制造的经验。Johanson 为全球高可靠性应用提供军用标准筛选和 COTS 陶瓷芯片电容器、射频无源器件、射频电感器。
Exxelia 是一家复杂无源元件和精密子系统制造商,专注于高要求的终端市场、应用和功能。Exxelia 产品组合包括各种电容器、电感器、变压器、电阻器、滤波器、位置传感器、滑环和高精度机械零件,服务于航空航天、国防、医疗、铁路、能源和电信等众多领先的工业领域。
Exxelia 是一家复杂无源元件和精密子系统制造商,专注于高要求的终端市场、应用和功能。Exxelia 产品组合包括各种电容器、电感器、变压器、电阻器、滤波器、位置传感器、滑环和高精度机械零件,服务于航空航天、国防、医疗、铁路、能源和电信等众多领先的工业领域。
我们的产品包括陶瓷,固体电解和膜电容器,脉冲超级电容器,脉冲,变种器,热敏电阻,过滤器,电感器,二极管,二极管,天线,连接器,传感器和控制单元。我们的全球制造能力包括位于四大洲十七个国家 /地区的设施,使我们能够在全球范围内继续满足客户需求。