我们的高可靠性产品能够满足最苛刻的应用规范,符合相关的 CeCC、eN、eSCC 或 MIL 规范。例如,我们的高可靠性电感器符合 MIL-t-27e、MIL-C-15305e 和 MIL-C-39010d 规范。我们的高可靠性电阻元件符合 eSCC 4001/022、MIL-PRF-39007、MIL-PRF-39009、MIL-PRF-39017、MIL-PRF 55182、MIL-PRF-55342、MIL-PRF-83401 和许多其他高可靠性规范。我们的高可靠性电容器符合 MIL-PRF-39003、MIL-PRF-39006、MIL-PRF-55365、MIL-PRF-123 和 MIL-PRF-55681 标准。
•峰Q因子> 20 @〜100MHz•峰电感密度〜300NH/mm2•L/RDC> 200NH/RDC> 100NH•100NH•L/RDC为L〜10NH的120NH/ω为120NH/ω•当前密度超过12A/mm2的速度超过1.5A的均超过12A/mm2•饱和度<3 pertrivation•饱和量均超过1.5a• •开发中的其他设备:•变压器,改进的电感器设计
单元 1:组件 14 小时 组件简介 – 无源组件和有源组件 – 电阻器、标准化、颜色编码技术、电阻器类型 – 电容器、电容器类型 – 电感器、电感器类型、特性和规格、变压器、变压器类型。 二极管 - 原子理论 – 硅和锗的结构 – 导体、半导体、绝缘体的能带图 – 本征和非本征半导体 – PN 结二极管 – 正向和反向偏置 PN 结的特性。 单元 2:特殊二极管及其应用 8 小时 特殊二极管 – 齐纳二极管 – 发光二极管 (LED) – 光敏二极管 (LDR)。 整流器 – 半波和全波(桥式和中心抽头)整流器 – 纹波系数 – 整流器的效率和滤波电路。第 3 单元:晶体管和偏置方法 17 小时 双极结型晶体管 – 晶体管结构 – PNP 和 NPN 晶体管 – 工作模式 – 共基极配置 (CB)、共发射极配置 (CE)、共集电极配置 (CC) – 晶体管参数 – α 和 β 之间的关系 – 偏置方法 – 固定偏置 – 集电极-基极偏置 – 发射极偏置场效应晶体管 – FET 的分类 – BJT 和 JFET 的比较研究 – FET 的优点和缺点 – JFET 的结构 – JFET 特性 – MOSFET(增强和耗尽)
ISL73006SLH 和 ISL73007SEH 分别是 1A 和 3A 负载点稳压器,输入电压范围为 3V 至 18V,可将电压调节至 0.6V。它具有精密电压基准,可在超紧凑外形中提供 ±1% 的温度、辐射和使用寿命调节精度。包括输出电感器、电容器和其他无源器件在内的总解决方案尺寸(ISL73006SLH)为 23 x 21.5 毫米,(ISL73007SEH)为 25.4 x 25.4 毫米。
ISL73006SLH 和 ISL73007SEH 分别是 1A 和 3A 负载点稳压器,输入电压范围为 3V 至 18V,可将电压调节至 0.6V。它具有精密电压基准,可在超紧凑外形中提供 ±1% 的温度、辐射和使用寿命调节精度。包括输出电感器、电容器和其他无源器件在内的总解决方案尺寸(ISL73006SLH)为 23 x 21.5 毫米,(ISL73007SEH)为 25.4 x 25.4 毫米。
ISL73006SLH和ISL73007SEH分别为1A和3A负载调节器,它们的输入电压在3V和18V之间,可以调节低至0.6V的电压。它具有精确的电压参考,在超紧凑的外形尺寸中提供±1%的调节精度。对于ISL73006SLH,包括输出电感器,电容器和其他被动剂在内的总解决方案大小为23 x 21.5mm,ISL73007SEH的总溶液尺寸为23 x 21.5mm,25.4 x 25.4毫米。
[学分:4 (3Th + 1P)] ELT-H-CC-1-1-TH 课程名称:电路理论和电子设备基础 [学分:3;授课时数:45] UNIT-I [12 小时] 电路元件:电阻和电阻器:类型、颜色编码和额定功率,可变电阻器,电容和电容器:类型、颜色编码和额定电压,电感和电感器:类型、颜色编码,电感线圈,空心和铁心线圈,自感和互感,变压器。电路分析:电压和电流源的概念,与电感器相关的磁通漏守恒和与电容器相关的电荷,基尔霍夫电压定律,基尔霍夫电流定律,电压和电流源的变换,网格分析和节点分析,星三角网络和转换。直流分析:直流激励下串联 RL 和 RC 电路的瞬态响应。交流分析:电路参数响应、交流激励下串联 RL、RC 和 RLC 电路的频率响应、电感器和电容器的品质因数 (Q)、串联和并联谐振电路、Q 因数。网络定理:叠加定理、戴维南定理、诺顿定理、互易定理和最大功率传输定理。第二单元 [11 小时] 半导体基础:半导体材料:类型和特性,固体能带的概念:金属、绝缘体和半导体、本征和非本征半导体、P 型和 N 型半导体、能带图、有效质量的概念、直接和间接带隙半导体、费米能级、态密度、半导体中电流传导的机制(漂移和扩散)、漂移速度、迁移率、电阻率、电导率、霍尔效应(无推导)。结型二极管及其应用:PN 结:晶圆级结构、能带图、耗尽层、二极管方程和 IV 特性、理想二极管、静态和动态电阻、反向饱和电流、齐纳和雪崩击穿、齐纳二极管、作为电压调节器的齐纳二极管、整流器:半波整流器、全波整流器(中心抽头和桥式)、峰值反向电压、纹波系数、效率、线路调节率、负载调节率、变压器利用率、并联电容滤波器、泄放电阻器的概念。
摘要:当前射频标识(RFID)标准之间的不相容性导致需要通用和无线保真度(Wi-Fi)兼容物联网应用程序(IoT)应用程序的RFID。这样的通用RFID需要单极双掷开关(SPDT)开关和低噪声放大器(LNA)才能通过天线指导和扩增接收到的原始信号。SPDT患有低隔离,高插入损失和低功率处理能力,而LNA遭受较小的增益,笨重的模具面积,质量较小(Q)因子,有限的调整灵活性等。由于当前一代设备中的被动电感器使用情况。在这项研究中,提出了基于互补的金属氧化物半导体(CMOS)的无电感SPDT和LNA设计。SPDT采用了一系列拓扑以及平行的共振电路和电阻体漂浮,以实现改进的插入损失和隔离性能,而LNA设计则以Gyrator概念实现,其中频率选择性储罐电路与伴随的活跃电感器形成了伴随的频率,并由伴随的激活电感器形成。使用90 nm CMOS的cmos cmos过程的表明,我们的SPDT设计完成了0.83 dB的插入损失,45.3 dB的隔离和11.3 dBM的动力处理能力,而LNA则达到33 dB的频率为33 db,bandf of 30 mhz和30 mhzz和db nf的频率。 SPDT和LNA的布局非常紧凑,分别为0.003 mm 2和127.7μm2。 这样的SPDT和LNA设计将增强与Wi-Fi兼容的IoT RFID技术的广泛改编。表明,我们的SPDT设计完成了0.83 dB的插入损失,45.3 dB的隔离和11.3 dBM的动力处理能力,而LNA则达到33 dB的频率为33 db,bandf of 30 mhz和30 mhzz和db nf的频率。SPDT和LNA的布局非常紧凑,分别为0.003 mm 2和127.7μm2。这样的SPDT和LNA设计将增强与Wi-Fi兼容的IoT RFID技术的广泛改编。
• FEOL 采用现成的代工工艺制造集成电路 • BEOL 采用 SoP 制造,具有超薄、灵活和背面功能 • 包括精密电阻器、电容器、电感器 • 能够包含灵活的光子硅波导(美国专利 9,733,428) • 堆叠金属层之间的高密度互连 • 精确的尺寸公差简化了 IC 键合和连接 • 半导体材料与硅 IC 的 CTE 相匹配 • 顶部和底部表面均具有高密度互连