多结构域蛋白内的变构信号传导是空间上相距较远的功能位点之间通信的驱动因素。了解大型多结构域蛋白中变构耦合的机制是实现系统空间和时间控制的最有希望的途径。最近,CRISPR-Cas9 在分子生物学和医学领域的应用激增,这促使人们需要了解 Cas9 的原子级蛋白质动力学(这是其变构串扰的驱动力)如何影响其生物物理特性。在本研究中,我们使用核磁共振 (NMR) 和计算的协同方法来精确定位热稳定性 Geo Cas9 的 HNH 结构域中的变构热点。我们表明,K597 突变为丙氨酸会破坏盐桥网络,进而改变 Geo HNH 结构域的结构、变构运动的时间尺度和热稳定性。在广泛研究的中温 S. pyogenes Cas9 中,这种同源赖氨酸到丙氨酸的突变同样改变了 Sp HNH 域的动力学。我们之前已经证明,通过突变改变变构是 Sp Cas9 (e Sp Cas9) 特异性增强的来源。因此,这在 Geo Cas9 中可能也是如此。由 AIP Publishing 独家授权发布。https://doi.org/10.1063/5.0128815
复合材料的力学性能并不令人满意,最初认为是由于Al层和Ag基体之间的相互扩散所致[22]。2011年,Gogotsi和Barsoum[23-24]合作通过从母体Ti3AlC2中选择性刻蚀掉Al原子平面,制备出一种具有二维结构的新型碳化物材料(Ti3C2Tx),称为MXenes。目前,Ti3C2Tx已受到许多应用领域的广泛关注[25-29]。Ti3C2Tx具有大的比表面积、良好的电导性、导热性和亲水性[30],是一种很有前途的导电复合材料增强体。具体来说,Ti3C2TX 已展示出其作为聚合物(PVA、PAM、PEI、PAN 等)、陶瓷(MoS2、TiO2 等)和碳材料(CNT、MWCNT、CNFs 等)复合材料添加剂的潜力[31]。因此,导电 Ti3C2TX 有望增强 Ag 基体成为一种新型电接触材料。本研究探索了 MXenes 在电接触材料中的应用。采用粉末冶金法制备了 Ti3C2TX 增强 Ag 基复合材料,研究了其电阻率、硬度、机械加工性、拉伸强度、抗电弧侵蚀等综合性能,并与 Ti3AlC2 陶瓷增强 Ag 基复合材料进行了比较。对两类样品性能差异的机理进行了分析和总结。研究结果将为今后新一代环保型银陶瓷复合电接触材料的设计与制备提供重要数据。