杰出科学家(APEX量表)V Narayanan博士目前是液体推进系统中心(LPSC)的总监,这是印度太空研究组织(ISRO)的主要中心之一,其总部位于Thiruvananthapuram的Valiamala,并在Bangalore拥有一个单位。作为导演,他正在为LPSC提供技术管理领导,该领导正在为发射车开发液体,半低温和低温推进阶段。用于卫星的化学和电推进系统,用于发射车辆的控制系统以及用于推进系统健康监测的传感器开发。V纳拉亚南博士(Rocket&Space Praft Profulsion Expert)于1984年加入了ISRO,并在成为该中心主任之前以各种身份发挥作用。在初始阶段,持续4和1/2年,在Vikram Sarabhai Space Center(VSSC)的Sounding Rockets和增强卫星发射车(ASLV)和Polar卫星发射车(PSLV)的固体推进区域工作。在过程计划,过程控制和实现烧烤喷嘴系统,复合运动案例和复合点火器案例的过程中做出了贡献。
传统上,用于电推进应用的加速器被归类为电热,静电(离子)或电磁(等离子体)加速器。最近的调查报告已发表了前两类(参考文献1-1和1-2)。 等离子体加速器的已由各种作者撰写(参考文献 1-3至I-8),但是全面的调查没有最新结果。 本报告的目的是在面向推进的等离子加速器程序中编译和解释最新的代表性实验数据。 一般而言,本报告代表了1965年7月发表的艺术状态。 最新的理论和纯粹的研究工作仅在结果直接与Accelerator计划有关时才提及。1-1和1-2)。已由各种作者撰写(参考文献1-3至I-8),但是全面的调查没有最新结果。 本报告的目的是在面向推进的等离子加速器程序中编译和解释最新的代表性实验数据。 一般而言,本报告代表了1965年7月发表的艺术状态。 最新的理论和纯粹的研究工作仅在结果直接与Accelerator计划有关时才提及。1-3至I-8),但是全面的调查没有最新结果。本报告的目的是在面向推进的等离子加速器程序中编译和解释最新的代表性实验数据。一般而言,本报告代表了1965年7月发表的艺术状态。最新的理论和纯粹的研究工作仅在结果直接与Accelerator计划有关时才提及。
3“电推进技术的历史”,电力技术官(ETO),https:// electrotechnical-officer.com/history-of-electric-propulsion-technology/; Lena Bergh和UlrikaHelldén,“ Pod推进的电气系统”,电力与环境科学硕士论文,Chalmers Technology,Chalmers Technology of Electric and Environment of Energy and Environalsing系,2007年,https://webfiles.portal.chalmers.chalmers.chalmers.chalmers.se/et/et/et/et/et/msc/msc/msc/ bergh&bergh&bergh&bergh&bergh&hellden&hellden。4 Hai-Chun Niu,Mei-Lian Zhao和Fu-Zhen Qin,“船舶电气推进系统及其发展的研究”,2017年第七届应用科学,工程技术国际会议(ICASET 2017),第1页,第212-216,https://www.researchgate.net/publication/317609471_ stuction_on_the_the_ship_erectric_shiprric_sypropuls_system_andsemit_and_its_its_defefment ;周佑诚http://uicl.iut.nsysu.edu.tw/courses/110-1/ smeedp/lecter_slides/20211210/smeedp_20211210.pdf。5lcdr r.r.r.a.sauvé,“电气推进:军舰推进的未来”,加拿大部队服务纸,2016年,https://www.cfc.forces.gc.ca/259/290/290/318/192/sauve.pdf。6 A. R. Greig,J。Coombes,D。J。Andrews和R. P. Pawling,“建模军舰中的热量分布”,世界海事技术会议(WMTC 2009),2009年,https://imare.in/imare.in/wp-content/plocation https:/imare.in/wp-content/
aircraft ● Launch of a new demonstrator with a megawatt-class superconducting motor @Airbus @AirbusUpNext #superconductivity #ZEROe #Vivatech Paris, 23 May 2024 - Airbus UpNext, a wholly-owned subsidiary of Airbus, has launched a new technological demonstrator to accelerate the maturation of superconducting technologies for use in electric propulsion未来氢能飞机的系统。被称为冷冻型物,新的示威者将通过氦气再循环环冷却并由液体氢冷却并由由法国图卢兹,法国和德国Ottobrunn开发的两个兆瓦级超导的电推进系统。“我们以前的示威者表明,超导技术将是对未来氢驱动飞机的高功率电气化的关键推动力。我真的相信,新的示威者将导致推进系统的性能提高,转化为重量和节省燃料的潜力。空中客车公司多年来一直在开发用于高功率推进的超导技术,最终导致去年综合500 kW的低温推进系统的动力。Cryoprop将确认对未来飞机应用的超导技术的潜力,评估与安全,工业化,维护和操作有关的所有方面。该演示者还将为空客提供开发高级,内部专业知识的机会,并促进一个新的生态系统,以加速在超导电缆,电动机,低温电力电子和低温冷却系统等领域引入新产品。注释编辑:
纳米卫星正引起工业界和政府的极大兴趣,用于执行一系列任务,包括全球船舶监测、全球水体监测、太空分布式射电望远镜和综合气象/精确定位任务。纳米卫星任务大幅增加,从 2003 年的 1 个开始,到 2020 年将超过 1,300 个。执行这些任务是为了获取宝贵的实验数据 [3]。冷气体推进系统因其简单性和可行性而在小型卫星中发挥着理想的作用。它们已被证明是最适合低地球轨道 (LEO) 机动的推进系统。到目前为止,该系统是小型航天器最成熟的技术之一。理想的特性包括设计简单、清洁、安全、坚固、低功耗运行、不给航天器产生净电荷以及宽动态范围。它能够以脉冲或连续方式运行。就硬件复杂性而言,它比脉冲等离子推力器、胶体推力器和场发射电推进推力器要简单得多。在这个系统中,推力是由惰性、无毒推进剂的排出产生的,推进剂可以以液态或气态储存。因此,它消耗的资金、质量和体积都很低。冷气系统主要由推进剂罐、电磁阀、推进器、管道和配件组成。油箱中装有卫星运行所需的姿态控制燃料。如前所述,燃料以液态或气态使用。推进器提供足够的力来维持卫星俯仰、偏航和滚转动力学的平衡[1,5,11]。除此之外,
摘要该特定论文探讨了空间“电推进系统”如何成为最有前途的未来派航天器推进技术之一,比化学和其他推进技术具有独特的优势。尽管共享某些相似之处,但空间航天器和空中飞行器的推进系统却不同,并且在这里探索了从下层大气到上层大气层的可能性的战略和系统方法,但在这里也很好地强调了这一点,尽管这也很简短。此外,关于特定的脉冲和产生的推力,在常规推进系统与电气推进系统之间进行了简要比较。此外,简要讨论了陆地气氛中不同的变异条件,以解决空间电气推进系统的各种挑战,并为这些挑战寻找新颖和创新的解决方案。还提到了当前情况下电气推进系统和各种推进器的不同类型的应用。主要重点是电力推进系统用于低空地轨道卫星的可行性,这些卫星主要用于地球观察,土地,水资源映射,气候警告系统,地球科学等。目前,从战略上开始进入电气推进系统及其在地球上层大气中的关键作用。虽然,但是,空间电动推进系统的其他各种应用,例如中高度的地球轨道卫星,主要用于航行目的,用于电信的地理卫星等,太空运输 - 发射器踢阶段,太空踢阶段,太空科学 - 互动空间探索等是这些特定纸张的范围,无法探索这些令人兴奋的范围。尽管如此,诸如卫星重量减轻,发射成本的减少,卫星的效率和功能的提高,空间碎屑数量减少,无毒绿色推进剂的使用减少,也将在该论文的范围之外讨论。
摘要:随着多电/全电飞机的发展,特别是混合电推进或电力推进飞机的进步,在电力需求不断增长、散热能力受限的情况下,必须解决飞机能量系统设计和运行优化的问题。本文概述了飞机电源系统架构优化和能量管理系统的研究现状。本文从多能源形式的角度回顾了飞机电源系统架构优化的基本设计方法。可再生能源如光伏电池和燃料电池被融入机载电源系统,由于其不确定性和功率响应速度,也使得飞机能量优化分配问题变得复杂。本文分析并介绍了飞机电源系统优化、评估技术和动态管理控制方法的基本思想和研究进展。总结了飞机能源系统架构工程设计优化方法的发展趋势,并从重量、可靠性、安全性、效率、可再生能源特性等约束条件下的多目标优化中得出。根据飞机的不同功率流关系,对基于能源效率和电能质量的成本函数进行了评论和讨论。本文将不同飞机微电网架构的动态控制策略与其他方法进行了比较。回顾了一些电力推进飞机和多电飞机的综合能源管理优化策略或方法。分析了飞机能量优化技术的数学考虑和表达,并比较了一些特点和解决方法。结合一些参考文献,讨论了热能和电能耦合关系研究领域以及飞机电力系统的电能质量和稳定性。最后,本文还对未来机场微电网与电力推进飞机动力系统的能量交互优化问题进行了探讨和预测。本文基于EMS和架构优化的最新技术发展,提出业界对飞机动力系统电气化的常识和未来趋势,并提出在电气化飞机推进系统架构选择中应遵循的EMS+TMS+PHM
2 7.612 1596:月球和火星表面上的高功率能量发电4 8 7.168 709:人类勘探推进的核电推进推进推进:核2 19 6.804 1558:跨月球表面交流和导航的高速通信1 28 6.592 1568:28 6.592 1568:入门模型和模拟式造型和仿真的效果 - 6. 6. 4 36. 4 3610:4 3610:4 3610:43 3610:43 3610:43 3610:4 3610:43 3611。具体冲动推进:非核2 37 6.383 1563:航天器减速和轨道插入入口下降和降落3 41 6.275 1430:小型航天器推进小型航天器1 42 6.267 1588:保护地球免受毁灭性自然影响(34 36),3 41 6.275 143 6 6.275:和集成精确着陆系统进入下降和着陆的验证能力1 47 6.220 844:用于多种应用的无源防尘缓解技术2 56 6.136 1047:各种粉尘施用的主动灰尘缓解技术减轻灰尘缓解灰尘粉尘1 69 5.932 1431:specy Spececececececececececececraft 1 69 511:specececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececececraft 1 51.和KW级电推进系统推进:非核2 79 5.825 1583:从提取的原地资源中生产推进剂和任务消耗品ISRU 2 122 5.044 705:低电力核电推进推进:核能2 126 5.016 544:Solar Electric Electric Prospuls for Orbital Platforms Spertulss Pranptims 7 1 131:9:9:9:9肯定:9:9:9:9:9:9:9:9:9:9:9:9:9:9:9:9.91 1 131:9-un-Nucceir l-Nuccience EDL进入下降和着陆期间的原位飞行性能数据5 132 4.916 767:轻质充气表面元素的高级设计高级材料和结构2 146 4.676 1567:小规模和商业航天器的入口功能
摘要:随着多电/全电飞机的发展,特别是混合电推进或电力推进飞机的进步,在电力需求不断增加、散热能力受限的情况下,必须解决飞机能量系统设计和运行优化的问题。本文概述了飞机动力系统架构优化和能量管理系统的研究现状。本文从多能源形式的角度回顾了飞机动力系统架构优化的基本设计方法。可再生能源如光伏电池和燃料电池被融入机载动力系统中,由于其不确定性和功率响应速度,也使得飞机能量优化分配问题变得复杂。本文分析并介绍了飞机动力系统优化、评估技术和动态管理控制方法的基本思想和研究进展。总结了飞机能源系统架构工程设计优化方法的发展趋势,并从重量、可靠性、安全性、效率、可再生能源特性等约束条件下的多目标优化中得出。根据飞机的不同功率流关系,对基于能源效率和电能质量的成本函数进行了评论和讨论。本文将不同飞机微电网架构的动态控制策略与其他方法进行了比较。回顾了一些电力推进飞机和多电飞机的综合能源管理优化策略或方法。分析了飞机能量优化技术的数学考虑和表达,并比较了一些特点和解决方法。结合一些参考文献,讨论了热能和电能耦合关系研究领域以及飞机电力系统的电能质量和稳定性。最后,本文还对未来机场微电网与电力推进飞机动力系统的能量交互优化问题进行了探讨和预测。本文基于EMS和架构优化的最新技术发展,提出业界对飞机动力系统电气化的常识和未来趋势,并提出在电气化飞机推进系统架构选择中应遵循的EMS+TMS+PHM
自2022年推出以来,清洁航空联合的承诺一直处于开创性技术的最前沿,这些技术正在推动可持续的航空革命,并致力于该行业到2050年实现气候中立的目标。尖端的项目促进了航空技术革命的促进,我们正在大力研究航空技术的激进革命,并渴望超越一代飞机。Clean Aviation将其努力尤其指向新的电力和混合电气概念,超高效的短和中等飞机架构以及造成氢气动力的技术。在2023年,作为我们第二次提案的一部分,我们在投资组合中添加了八个创新项目,总体活动为3.8亿欧元,其中包括1.52亿欧元的欧盟资金。这些项目针对新型飞机概念,创新的推进架构以及新的机身和机翼设计,并补充了那些根据Clean Aviation首次提出建议的资助的人,并为从2026年开始的地面和飞行测试活动准备了所有必要的元素。在我们的其他20个项目上进行的工作正在很好地发展,以开发尖端的创新,包括电推进系统,氢和混合动力燃气轮机设计以及下一代高功率燃料电池。以8.06亿欧元的资金资助,总共28个项目将来自24个不同国家的300个实体汇集在一起。通过这项关键工作,航空公司将被武装,以在2035年到2035年的入门服务中将清洁航空的技术整合到该计划的一生中。新的相关成员带领通往气候中性航空的道路。此外,随着我们的会员资格扩大到59名成员,清洁的航空联合承诺现在拥有解决该计划野心所需的所有必要能力。新成员将长期参与清洁航空计划,并与欧洲委员会和其他CAJU私人成员一起,将带领通往气候中性航空的道路。看到许多源自中小企业的成功应用程序是迈向促进我们会员中进一步多样性的重要一步。中小企业的参与增加将增强其在计划中的接触和参与度,并提供重要的技术贡献,以推动2030年之前的开创性飞机技术的交付。将欧洲的资源团结到2035年到2050年达到气候中立航空的资源是一个巨大的挑战,只能通过在欧盟,国家和地区级别携手来实现。因此,最大化欧洲的计划和计划的协同作用是为可持续航空做出的贡献,仍然是清洁航空的核心优先事项。为了帮助弥合从研究成果到市场的差距,清洁航空正在促进合作,并使来自地区,成员国和相关国家到Horizon Europe的融资来源使融资来源调整,并着眼于从欧盟的多年度金融框架中调动其他资源。当清洁航空和清洁氢关节承诺(Clean Whydogen JU)在三月份签署了一份理解备忘录,以建立