屏幕打印电极(SPE)是广泛用于电化学传感器构造中的多功能工具,被认为是设计一次性电分析传感器的有效平台。他们提供了许多优势,包括快速和可靠的分析,高灵敏度,良好的选择性,易用性,微型化,均匀性,可移植性和成本效益。1出现了屏幕打印的概念,以满足对较小,负担得起的电化学设备的需求,从而使这些工具更容易访问和实用。屏幕打印技术通过葡萄糖生物传感器的开发获得了开创性的认可和商业成功。2在2000年代初期,基于SPE的设备的商业化在环境监测,食品安全和医疗保健等领域之间大大扩展。3的可负担性,可移植性和质量生产的易用性使SPE对包括药物和生物学分析在内的不同应用具有极大的吸引力。4个SPE已成功应用于现场检测各种矩阵的各种分析物,从而可以检测药物和其他生物分子。1 SPE的主要优点之一是它们的适应性:它们可以用作一次性,现成的电极或表面修饰以进行专业应用,使其适合于痕量测定生物分子。5,6 SPE技术的最新进步致力于通过整合纳米材料的创新表面修饰策略来提高性能。7修改用于提高灵敏度,提高选择性和总体稳定性的提高。8通常考虑两种主要方法:首先,通过结合聚合物,金属,复合物,酶和其他材料来改变印刷墨水组成,以开发新型的基于墨水的SPE;第二,修改
位于纽约州罗切斯特和/或马萨诸塞州波士顿的 Ionomr 工厂的实验室和制造工艺产生的直接排放包括蒸发不到 10 加仑(估计值)的有机溶剂和 15,000 立方英尺的无毒实验室气体(N2 和氩气)。在位于加拿大温哥华的 Ionomr 工厂加热炉子和操作测试台以及在英国雷丁的 Johnson Matthey 工厂干燥 CCM 时,也会释放一些排放物。纽约州拉森的 Plug Power 的获奖工作将涉及设备测试,并将导致设施的排放量因项目而发生变化。溶剂的使用将在加利福尼亚州欧文的工厂进行,并在通风橱下进行。与此项目相关的排放量将被视为微不足道。
由保罗·巴德(Paul Baade)和三位同事于2022年创立,8次通过其创新的多层窗帘涂料工艺来重塑锂离子电池制造。该技术可实现高级电极体系结构和更快的生产速度,目的是在降低成本的同时提高电池性能。保罗的旅程始于苏黎世Eth Zurich,在那里他为电动赛车设计了电池组。 他的激情使他在劳伦斯·伯克利实验室(Lawrence Berkeley Lab)研究了电池材料,并获得博士学位。在Eth Zurich,他在那里开发了8 Inks背后的创新技术。 公司的电极制造方法解决了现代电池生产中的主要挑战,并有可能改变行业的效率,绩效和经济性。 在这次采访中,保罗·巴德(Paul Baade)博士讨论了8inks多层窗帘涂层的独特方法及其对高性能,可扩展的电池解决方案的影响。保罗的旅程始于苏黎世Eth Zurich,在那里他为电动赛车设计了电池组。他的激情使他在劳伦斯·伯克利实验室(Lawrence Berkeley Lab)研究了电池材料,并获得博士学位。在Eth Zurich,他在那里开发了8 Inks背后的创新技术。公司的电极制造方法解决了现代电池生产中的主要挑战,并有可能改变行业的效率,绩效和经济性。在这次采访中,保罗·巴德(Paul Baade)博士讨论了8inks多层窗帘涂层的独特方法及其对高性能,可扩展的电池解决方案的影响。
到加泰罗尼亚(ICN2),CSIC, 照片科学(ICFO), IMB-CNM(CSIC)剑, (ESI)可用。 请参阅doi:到加泰罗尼亚(ICN2),CSIC,照片科学(ICFO), IMB-CNM(CSIC)剑, (ESI)可用。请参阅doi:
本期刊文章的自构建后版本可在Linköping大学机构存储库(DIVA)上获得:https://urn.kb.se/resolve?urn = urn= urn= urnt:se:se:se:se:liu:diva-206387 N.B. N.B.:引用这项工作时,请引用原始出版物。Padinhare Cholakkal,H.,Tu,D.,Fabiano,S。(2024),神经形态感知的有机电化学神经元,自然电子,7(7),525-536。 https://doi.org/10.1038/s41928-024-01200-5
4化学系,Sri Guru Teg Bahadur Khalsa学院,Anandpur Sahib-140118,印度旁遮普邦。 摘要:超级电容器(SC)的高效电极材料的发展引起了人们的重大关注,由于其高孔隙率,成本效益,合成性易于合成和可调电导率,导致聚合物(CPS)作为有希望的候选者出现。 但是,CP通常在循环稳定性和能量密度方面面临局限性。 最近的研究集中在CP与金属氧化物(MOS)和碳基材料的协同整合,形成复合电极,具有增强的电导率,机械耐用性和改善的电化学性能。 本评论突出了将CP与MOS和石墨烯衍生物相结合以解决这些局限性的新方法,从而导致了较高的能量存储能力。 通过概述该领域的最新进展,我们旨在阐明这些协同相互作用及其对电极性能的影响的机制。 本文强调了下一代超级电容器设计中创新的潜力,为更高效,更耐用的储能解决方案铺平了道路。4化学系,Sri Guru Teg Bahadur Khalsa学院,Anandpur Sahib-140118,印度旁遮普邦。摘要:超级电容器(SC)的高效电极材料的发展引起了人们的重大关注,由于其高孔隙率,成本效益,合成性易于合成和可调电导率,导致聚合物(CPS)作为有希望的候选者出现。但是,CP通常在循环稳定性和能量密度方面面临局限性。最近的研究集中在CP与金属氧化物(MOS)和碳基材料的协同整合,形成复合电极,具有增强的电导率,机械耐用性和改善的电化学性能。本评论突出了将CP与MOS和石墨烯衍生物相结合以解决这些局限性的新方法,从而导致了较高的能量存储能力。通过概述该领域的最新进展,我们旨在阐明这些协同相互作用及其对电极性能的影响的机制。本文强调了下一代超级电容器设计中创新的潜力,为更高效,更耐用的储能解决方案铺平了道路。
抽象目的是越来越多的人工耳蜗候选者表现出残留的内耳功能,植入物插入过程中的听力保存策略变得越来越重要。手动植入已知会诱导创伤和压力峰。在这项研究中,我们使用经过验证的维特罗模型来全面评估一种新型的手术工具,该工具通过镊子的机动运动来解决这些挑战。使用侧壁电极的方法,我们检查了两个插入的亚组:经验丰富的外科医生手动执行了30次插入,并在同一外科医生的监督下使用机器人辅助系统进行了另外30个插入。我们利用了颞骨的现实,经过验证的模型。该模型准确地再现了摩擦后的摩擦条件,并允许对力学结构,当2型式后压力以及Scala Tympani内电极阵列的位置和变形进行力同步记录。结果,我们与常规程序相比,在机器人辅助插入过程中的力变化显着降低,平均值分别为12 mn/s和32 mn/s。机器人辅助也与强压峰的显着降低和2B降低有关。此外,我们的研究强调,插入工具的释放代表了需要手术训练的关键阶段。与手动技术相比,结论机器人援助表现出更一致的插入速度。它的使用可以显着减少与2肢内创伤相关的因素,从而突出其改善听力保存的潜力。最后,该系统不会减轻随后的手术步骤(例如电极电缆路由和人工耳蜗访问密封)的影响,指向需要进一步研究的领域。
摘要:虽然微电极阵列(MES)提供了阐明功能性神经回路的承诺,并作为皮质神经假体的基础,但仍保留了设计和持续可靠的技术的挑战。大量研究报告了“慢性”数据,但实际时间跨度和与实验工作相对应的性能度量有所不同。在这项研究中,我们回顾了构成多种MEA类型和动物物种的慢性研究的实验持续时间,以了解报告的研究持续时间的广泛可变性。对于啮齿动物,这是慢性研究中最常用的动物模型,我们检查了不同阵列类型的主动电极产量(AEY),以作为使研究持续时间差异的情境,并研究和解释与常规测量相比的自定义设备的性能。我们观察到在慢性植入期间物种内的广泛方差,并且在植入市售设备的啮齿动物模型中线性衰减的AEY。这些观察结果为比较新技术的性能提供了一个基准,并强调了在慢性MEA研究中的一致性的需求。此外,为了在慢性条件下完全取消性能,非生物衰竭模式的持续时间,留置探针引起的生物过程以及设备的预期应用是关键决定因素。