在本工作中,开发了一种使用差异脉冲伏安法技术的伏安法,用于评估抗染料和镇痛药,乙酰氨基酚。制备并表征CuO纳米颗粒。使用了用CuO纳米颗粒(Cuonps)和多壁碳纳米管(MWCNT)制造的玻璃碳电极(GCE)。修饰的电极通过在磷酸盐缓冲液中引入阴离子表面活性剂硫酸钠,显示出改善的阳极峰电流。在生理pH值为7.4的情况下研究了支撑电解质的pH,纳米颗粒悬浮液的量和表面活性剂浓度的影响。使用差异脉冲伏安法,制造的电极显示了对乙酰氨基酚浓度的线性动态范围。从校准图中,计算出的检测极限为5.06 nm,定量极限为16.88 nm。该方法在一天的日期和盘中也测试了其可重现性和测定。开发的过程是有效地应用的,以检测给婴儿施用的小儿口服悬浮液中的对乙酰氨基酚。
摘要。目的:本研究探讨颅内电极捕获的神经信号的语音解码。大多数先前的研究只能处理 2D 网格上的电极(即脑皮层电图或 ECoG 阵列)和来自单个患者的数据。我们的目标是设计一个深度学习模型架构,可以同时适应表面(ECoG)和深度(立体定向 EEG 或 sEEG)电极。该架构应允许使用来自多个参与者的数据进行训练,这些参与者的电极位置变化很大,并且训练后的模型应该在训练期间未见过的参与者身上表现良好。方法:我们提出了一种名为 SwinTW 的新型基于变压器的模型架构,该架构可以利用任意位置的电极在皮层上的 3D 位置而不是它们在 2D 网格上的位置来处理它们。我们使用来自单个参与者的数据训练特定于主题的模型,并利用来自多个参与者的数据训练多患者模型。主要结果:仅使用低密度 8x8 ECoG 数据的受试者特定模型在 N=43 名参与者中实现了高解码皮尔逊相关系数与地面实况频谱图 (PCC=0.817),优于我们之前的卷积 ResNet 模型和 3D Swin Transformer 模型。在每个参与者 (N=39) 中加入额外的条带、深度和网格电极可带来进一步的改进 (PCC=0.838)。对于只有 sEEG 电极的参与者 (N=9),受试者特定模型仍然具有可比的性能,平均 PCC=0.798。多受试者模型在看不见的参与者身上实现了高性能,在留一交叉验证中平均 PCC=0.765。意义:提出的 SwinTW 解码器使未来的语音神经假体能够利用任何对特定参与者来说临床上最佳或可行的电极位置,包括仅使用更常规的深度电极
已证明在太阳能电池中引入贵金属纳米颗粒可以增强钙钛矿太阳能电池的性能。在这项研究中,利用银色改性的光诺德人通过连续的离子层吸附和反应(Silar)程序来改善钙钛矿太阳能电池的性能。由于表面等离子体共振效应,设备的光捕获能力通过出色的光伏特性增强。使用SEM,XRD,UV可见的吸收分光光度计和太阳能模拟器探索了引入的银纳米颗粒(AGNP)的等离子体效应。SEM结果显示紧凑的形态和闪烁的表面,表明存在AGNP。XRD结果显示出良好的晶相。UV-VIS结果显示出具有AGNPS掺入的光学吸收增强。制造的PSC的光伏特性是:(i)原始设备; JSC为6.440 mA/cm 2,VOC。为0.948 V,FF为0.642,PCE为3.917%,(II)具有1架Agnps的装置; JSC为014.426 MA/CM 2,VOC。为0.949 V,FF为0.642,PCE为8.795%,(iii)设备具有2张AGNPS; JSC为10.815 mA/cm 2,VOC为0.917 V,FF为0.558,PCE为5.536%。具有最佳性能的设备是由1个AGNP的1个静音周期制成,显示PCE的增强率为2.245次,JSC的〜2.240次,在参考设备上的VOC中〜1.001倍。这项研究的结果解锁了AGNP的有益作用,并进一步有助于理解由于引入AGNP引起的表面等离子体效应。
2D半导体可以推动量子科学和技术的进步。但是,它们应该没有任何污染。同样,相邻层及其电子特性的晶体学排序和耦合应具有良好的控制,可调且可扩展。在这里,这些挑战是通过一种新方法来解决的,该方法结合了分子束外延和原位带工程在石墨烯上半导体硒化(GASE)的超高真空中。通过电子差异,扫描探针显微镜和角度分辨的光电子光谱法表明,在层平面中与基础与石墨烯的下层晶格相对的原子研究表明,GASE的原子薄层对齐。GASE/石墨烯异质结构(称为2semgraphene)具有GASE的中心对称性(组对称性D 3D)多晶型物,GASE/Chapeene界面处的电荷偶极子,以及可通过层厚度调谐的带结构。新开发的可伸缩2秒封装用于光学传感器,该传感器利用光活动Gase层和与石墨烯通道的接口处的内置电势。此概念证明具有进一步的进步和设备体系结构,将2semgraphene作为功能构建块。
摘要:垂直有序的介孔二氧化硅膜(VMSF)是由超毛孔和超薄垂直纳米渠道组成的一类多孔材料,它们在电分析传感器和分子分离的区域具有吸引力。然而,VMSF很容易从碳纤维电极中掉下来,从而影响其广泛的应用。在此,氮化碳纳米片(CNN)作为粘合剂层,可在玻璃碳电极(GCE)上稳定VMSF生长。CNN可以与VMSF的硅烷醇基团共价结合,从而有效地促进了VMSF在GCE表面上的稳定性。受益于VMSF的许多开放纳米孔,用碳水化合物抗原15-3(CA15-3)特异性抗体修改VMSF外表面,可以通过硅胶内部硅含量进行电化学探针的目标传输,从而通过硅胶内部降低敏感性检测到1000的nosion nanochnels,从0.47 mu/mL的检测极限。此外,提出的VMSF/CNNS/GCE免疫传感器能够高度选择性,准确地确定尖峰血清样品中的Ca15-3,该样品提供了一种简单有效的电化学策略,可在复杂的生物学标本中检测各种实用生物标志物。
Zn/MNO 2电池由双重沉积反应驱动,是在水性系统中实现高能量密度的突出途径。引入最初的双电极(阳极/阴极)构型可以将能量密度进一步提高到200 WH kg -1以上,但由于Zn/MNO 2沉积和剥离的可逆性差而导致的循环寿命有限。从材料合成中的软模板策略中汲取灵感,在这里,我们将这种方法应用于电沉积和剥离,并设计原位形成的液晶相间。通过仅将0.1 mM的表面活性剂分子掺入电解质中来实现,这可以诱导有利的C轴向取向沉积六边形Zn和MNO 2。这种增强后随后增加了沉积/剥离可逆性,并促进了双电极电池的循环寿命,在〜950周期后实现了80%的容量保留。这种液晶相间化学也有很大的希望,可以在其他晶体系统中调节沉积,为下一代高能密度和基于水性化学的长期储能打开了令人兴奋的研究方向。
开发具有更安全、更具成本效益的系统的高性能平面微电池对于为医疗植入物、微型机器人、微型传感器和物联网 (IoT) 等智能设备供电至关重要。然而,由于难以有效地将高容量活性材料加载到微电极上,目前的片上微电池在有限的设备占用空间内能量密度有限。片上微电池需要先进微电极的创新设计。这项工作引入了先进的、高度多孔的 3D 金 (Au) 支架基叉指电极 (IDE) 作为集电器,这能够有效地加载活性材料 (Zn 和聚苯胺),而不会影响整体导电性,并显著增加活性质量负载。这些基于 3D Au 支架的微电池(3D P-ZIMB)在材料加载到平面 Au IDE 上时,与传统微电池(C-ZIMB)相比,具有显著更高的能量存储性能(增强 135%)。此外,3D P-ZIMB 比大多数高性能片上微电池具有更高的面积容量(≈ 35 μ Ah cm − 2 )和面积能量(≈ 31.05 μ Wh cm − 2 ),并且它提供比高性能片上微型超级电容器高得多的面积功率(≈ 3584.35 μ W cm − 2 )。深入的事后调查显示,3D P-ZIMB 避免了材料剥落、电解质离子扩散缓慢和阳极上枝晶形成等问题,同时保持了相同的材料形貌和结构特征。因此,本研究提出了一种智能策略来提高平面微电池的电化学性能并推动片上微电池研究领域的发展。
壳聚糖涂层,源自甲壳类动物壳废物,具有固有的生物相容性和生物降解性,使它们适合各种生物医学和环境应用,包括电化学生物透镜。其胺和羟基官能团为化学修饰提供了丰富的位点,以增强电荷转移动力学并提供出色的粘附,从而实现了稳健的电极涂层接口进行电分析。本研究探讨了静电驱动的化学相互作用和交联密度的作用,该密度源自不同壳聚糖(CS)和戊二醛(GA)浓度在这方面的作用。研究阴离子([Fe(CN)6] 3 - /4-),中性(FCDM 0 / +)和阳离子([RU(NH 3)6] 2 + /3 +)氧化还原探针突显了通过含有正气收费路径的壳聚糖链与Dft分析计算的壳聚糖链与壳聚糖链的影响。我们的研究揭示了适当的CH与GA比如何对交叉连接功效和结果电荷转移动力学具有较大的影响,这主要是由于电触电驱动的,这是由于电动驱动的负电荷的亚烯酰胺离子朝向带阳性充电的阳性电荷载荷的外壳粒的迁移而促进了多达20倍分析的预浓度。值得注意的是,表面工程方法允许[Fe(CN)6] 4-检测限制的两个数量级增强,从裸机的0.1 µm到适当的水凝胶修饰后,裸露的GCE降至0.2 nm。
B'Abstract:磷酸锂(LFP)/石墨蝙蝠长期以来一直占据了能源电池市场的主导,预计将成为全球电池电池市场中的主要技术。但是,LFP/石墨电池的快速充电能力和低温性能严重阻碍了它们的进一步扩散。这些局限性与界面锂(LI)-OION运输密切相关。在这里,我们报告了一种基于宽的酯基电解质,该电解质具有高离子的有效性,快速的界面动力学和出色的膜形成能力,通过调节Li Salt的阴离子化学。通过采用三电极系统和松弛时间技术的分布来定量地揭示电池的界面屏障。还系统地研究了所提出的电解质在防止LI 0电镀和持续均匀和稳定的相互作用中的优势作用。LFP/石墨细胞在80 \ XC2 \ XB0 C至80 \ XC2 \ XB0 C的超速温度范围内表现出可再生能力,并且在没有寿命的情况下出色的快速充电能力。特别是,实用的LFP/石墨袋细胞在1200个循环后(2 C)(2 C)和10分钟电量在25 \ XC2 \ XB0 C时达到89%(5 c),即使在80 \ xc2 \ xb0 C.'\ xc2 \ xb0 C \ xb0 C \ xb0 C上,可实现80.2%的可靠性。
K. Kavitha博士,助理教授 - II化学系具有15年的教学经验,此外还拥有5年的电分析化学研究经验。 目前担任印度泰米尔纳德邦钦奈维拉马工程学院的助理教授(高年级)。 她从马德拉斯大学分析化学系获得了硕士学位,硕士和博士学位。 在推荐的国家和国际期刊上发表了15多个研究出版物,例如UGC Care Group II,Scopus,Web of Science和SCI索引期刊。 她还于2024年4月发布了专利的“机械能源存储机”。 出版了与工程化学的批评有关的3本书。 在过去的15年中积极参与教学过程和学生学者,并领导着领先的学术职位。 研究领域包括传感器,生物传感器,电化学,电分析技术,药物分析。K. Kavitha博士,助理教授 - II化学系具有15年的教学经验,此外还拥有5年的电分析化学研究经验。目前担任印度泰米尔纳德邦钦奈维拉马工程学院的助理教授(高年级)。她从马德拉斯大学分析化学系获得了硕士学位,硕士和博士学位。在推荐的国家和国际期刊上发表了15多个研究出版物,例如UGC Care Group II,Scopus,Web of Science和SCI索引期刊。她还于2024年4月发布了专利的“机械能源存储机”。出版了与工程化学的批评有关的3本书。在过去的15年中积极参与教学过程和学生学者,并领导着领先的学术职位。研究领域包括传感器,生物传感器,电化学,电分析技术,药物分析。