1 延世大学电气电子工程学院,首尔 03722,韩国 2 韩国科学技术研究院生物医学研究所仿生学中心,首尔 02792,韩国 3 成均馆大学电气与计算机工程系,水原 16419,韩国 4 韩国科学技术大学 KIST 学院生物医学科学与技术系,首尔 02792,韩国 5 成均馆大学智能精准医疗融合系,水原 16419,韩国 6 成均馆大学生物医学工程系,水原 16419,韩国 7 成均馆大学超智能工程系,水原 16419,韩国 * 通讯地址:mikyungshin@g.skku.edu (硕士);daniel3600@g.skku.edu(博士)
摘要我们描述了表面电极离子陷阱连接的设计,这是大尺度离子陷阱阵列的关键元素。使用双目标优化方法设计电极,该方法保持了总伪电量曲率,同时最小化沿离子传输路径的轴向伪电势梯度。为了促进在多个陷阱区域中的平行操作的激光束输送,我们在此X结陷阱的每个臂上实现了集成的光学器件。提出了商业铸造制造的陷阱芯片的布局。这项工作建议在可扩展实现中改善离子陷阱连接性能的路线。与集成的光学解决方案一起,这有助于互连的二维阵列中的模块化陷阱离子量子计算。
神经矩阵样式,用于脑机界面(BMIS)和神经科学研究的高密度电极阵列需要使用多路复用:每个记录通道都可以路由到阵列上的几个电极位点之一。此功能允许用户富裕地将记录通道分发给可以解决最理想的神经信号的位置。例如,在神经质探针中,可以通过384个记录通道来解决960个电极。但是,目前尚无自适应方法使用记录的神经数据来优化/自定义每个记录上下文的电极选择。在这里,我们提出了一种称为基于分类的选择(CBS)的算法,该算法优化了所有记录通道的关节电极选择,以最大程度地提高检测到的神经元的隔离质量。我们在使用非人类灵长类动物中的神经质子的实验中表明,该算法会产生与同时记录所有电极同时记录所有电极相似的隔离神经元。神经元计数比以前发表的电极选择策略提高了41-85%。通过CBS选择的电极分离的神经元是73%的匹配,通过尖峰时间到探针周围的完整可记录神经元集。CBS选择的电极表现出较高的平均每个记录通道信号 - 噪声比。CBS以及一般的选择优化可能在BMI神经技术的开发中起重要作用,因为信号带宽成为越来越有限的因素。代码和实验数据已提供1。
神经矩阵样式,用于脑机界面(BMIS)和神经科学研究的高密度电极阵列需要使用多路复用:每个记录通道都可以路由到阵列上的几个电极位点之一。此功能允许用户富裕地将记录通道分发给可以解决最理想的神经信号的位置。例如,在神经质探针中,可以通过384个记录通道来解决960个电极。但是,目前尚无自适应方法使用记录的神经数据来优化/自定义每个记录上下文的电极选择。在这里,我们提出了一种称为基于分类的选择(CBS)的算法,该算法优化了所有记录通道的关节电极选择,以最大程度地提高检测到的神经元的隔离质量。我们在使用非人类灵长类动物中的神经质子的实验中表明,该算法会产生与同时记录所有电极同时记录所有电极相似的隔离神经元。神经元计数比以前发表的电极选择策略提高了41-85%。通过CBS选择的电极分离的神经元是73%的匹配,通过尖峰时间到探针周围的完整可记录神经元集。CBS选择的电极表现出较高的平均每个记录通道信号 - 噪声比。CBS以及一般的选择优化可能在BMI神经技术的开发中起重要作用,因为信号带宽成为越来越有限的因素。代码和实验数据已提供1。
在某些应用中,共享共同电极的这两种设备的组装在设备形状因子,可移植性和能源生产和存储的权力下放的某些应用中比整体过程效率更重要。太阳能电化学储能(SEE)概念首先是由Hodes于1976年提出的,[1]基于光电化学细胞,使用CDSE作为光电子,S/S-2,作为氧化还原电力lyte和Ag 2 S/Ag作为阳极。先驱研究被报道的太阳能水分[2]和晚期氧化过程[3]黯然失色,并具有更有希望的结果和更高的有效利用太阳能。然而,由于社会化和可持续的能源和电化学能源能源(尤其是在锂离子电池中)和光伏电池(例如染料 - 敏感性和佩洛夫斯基太阳能电池)的分散和可持续能源和技术进步,对这些研究的兴趣在过去十年中的兴趣增加了。尽管这种新的兴趣,但对基于插际离子电池的系统的研究仍然很少。在2000年代初期,See系统基于染料敏化的太阳能电池。在这些系统中,电解质包含氧化还原对I 3
摘要:当前对多元,脑电图中的干电极(EEG)中的干电极对于在非实验室环境中的应用有望。干电极不需要应用导电凝胶,该电极大部分都可以在实验室环境中使用凝胶EEG系统。这项研究的目的是通过将其性能与常规凝胶EEG电极进行比较来验证软,多元,干性脑电图电极。15名健康志愿者执行了三项任务,具有32通道凝胶EEG系统和32通道干的脑电图系统:40 Hz听觉稳态响应(ASSR),Checkerboard范式,露天/闭合任务。内部分析,以比较时间,频率和空间域中的信号质量。结果在时间和频域中两种系统之间的相似性很强,视觉范围(ρ= 0.89)和听觉引起的潜力很强(ρ= 0.81),并且在闭合期间alpha频段的相关性中等至强相关性(ρ= 0.81-0.86)和40 Hz-assr Power(ρ= 0.81-0.86)和40 Hz-assr Power(ρ= 0.66-02)。1。1-2-02)。72-02-2-2-02-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2。然而,三角洲和theta频带功率显着增加,而干脑电系统的信噪比显着降低。两种系统的地形分布都相当。此外,干脑电系统的应用时间显着短(8分钟)。可以得出结论,柔软的多元干脑电系统可用于大脑活动研究,其精度与常规凝胶电极相似。
湿凝胶电极已被广泛用于脑电图记录(EEG)信号记录,这通常会导致皮肤磨损和较长的制备时间。在本文中,我们提出了基于离子 - 羟基的柔软电极来克服此类缺点。为了方便地测量EEG信号,我们设计了类似爪状和类似斑块的结构,以在金属(AG/AGCL)电极和皮肤头皮之间进行牢固连接。接下来,我们在实验上表明,在短路噪声,电阻抗,电阻抗和皮肤电极接触阻抗上,在常规的湿凝胶电极上具有与常规湿凝胶电极相似的性能,对未准备好的人皮肤的皮肤接触阻抗,比干电极和水性电极要好得多。我们进一步执行了具有五个受试者的EEG测量和稳态的视觉诱发电位(SSVEP)实验,以验证软离子 - 羟基电极的有效性。实验结果表明,我们开发的软离子 - 凝胶电极可以快速,干净的方式记录高质量的脑电图信号,这是基于脑电图的脑部计算机接口的令人信服的选择。
已经开发出一种基于丙酮的从锂离子电池电极中回收聚偏氟乙烯 (PVDF) 的工艺。首先使用丙酮溶解 PVDF 粘合剂,然后将电极材料在丙酮中搅拌以使其与集电器分层。电极分离成电极材料、PVDF 粘合剂和集电器。测量了 PVDF 在丙酮中的溶解度与温度的关系,发现溶解度随温度升高而增加,在 150 ◦ C 左右达到最大值。测量了纯态和电极中 PVDF 的溶解速率与温度的关系。前者比后者快得多。对 PVDF 从电极中扩散的情况进行了数学建模,以预测材料回收的时间。该研究表明,通过从锂离子电池中回收 PVDF、电极材料和集电器,可以建立直接回收工艺。
