doi:https://dx.doi.org/10.30919/es1178基于pt@r-go@mwcnts ternary nanocomposites修饰电极Y. Bakytkarim,bakytkarim,1,1,1,#S。tursynbolat,#ZHBOLAT,2 ZHBOLAT,2 ZHBOLAT,2 ZHBOLAT,2 Z.S. Mukatayeva,1,* ye。Tileuberdi,1 N.A.Shadin,1 ZH.M. Assirbayeva,1,* L. S. Wang,3 L.A. Zhussupova 4和Zhexenbek Toktarbay 5,6摘要这项工作报告了一种电化学传感器,用于对氯酸的高敏化电化学测定。 电化学传感器主要是由PT@r-go@mwcnts三元纳米复合材料制成的,通过一锅方法制备,修饰的材料结构的特征是通过扫描电子显微镜(SEM)和能量分散性X射线光谱光谱(EDS)技术来表征。 使用环状伏安法(CV)和差异脉冲伏安法(DPV)研究了PT@r-go@mwcnts/gce上氯化酸的电化学行为。 由于PT@r-go@mwcnts纳米复合材料的出色电导率和催化特性,与裸露的GCE相比,PT@r- go@mwcnts/gce显示出更强的电化学响应信号,对氯酸。 在pH 6.0处的0.1 M PBS缓冲溶液中,富集潜力为-0.1 V,富集时间为150 s,PT@R- GO@MWCNTS/GCE的线性范围用于检测氯化酸的0.005〜2 µm和2〜20 µm和2〜20 µm和2〜20 µm,并且检测极限为0.001。 此外,该传感器还具有良好的选择性,可重复性和稳定性,并已成功用于检测真正的血清样品中的绿原酸。Shadin,1 ZH.M.Assirbayeva,1,* L. S. Wang,3 L.A. Zhussupova 4和Zhexenbek Toktarbay 5,6摘要这项工作报告了一种电化学传感器,用于对氯酸的高敏化电化学测定。电化学传感器主要是由PT@r-go@mwcnts三元纳米复合材料制成的,通过一锅方法制备,修饰的材料结构的特征是通过扫描电子显微镜(SEM)和能量分散性X射线光谱光谱(EDS)技术来表征。使用环状伏安法(CV)和差异脉冲伏安法(DPV)研究了PT@r-go@mwcnts/gce上氯化酸的电化学行为。由于PT@r-go@mwcnts纳米复合材料的出色电导率和催化特性,与裸露的GCE相比,PT@r- go@mwcnts/gce显示出更强的电化学响应信号,对氯酸。在pH 6.0处的0.1 M PBS缓冲溶液中,富集潜力为-0.1 V,富集时间为150 s,PT@R- GO@MWCNTS/GCE的线性范围用于检测氯化酸的0.005〜2 µm和2〜20 µm和2〜20 µm和2〜20 µm,并且检测极限为0.001。此外,该传感器还具有良好的选择性,可重复性和稳定性,并已成功用于检测真正的血清样品中的绿原酸。
氯离子电池(CIB)为锂离子系统提供了令人信服的替代方案,尤其是在要求成本效益和资源可持续性的应用中。但是,量身定制的电极材料的开发仍然是CIB进步的关键瓶颈。在这项研究中,我们首次通过轻松的机械化学途径合成了一类未开发的基于钙钛矿的材料含钾(K 2 SNCl 6,称为KSC)。制备的KSC经过各种表征技术,以确认其晶体结构和形态。在此,KSC利用锂金属计数器电极在非水CIB构型中表现出有趣的电化学性能。此外,Ex-Situ X射线衍射(XRD)和X射线光电子光谱(XPS)分析揭示了涉及氯离子穿梭的转化反应机制,并在循环过程中提供了对结构进化的见解。此外,密度功能理论(DFT)研究支持了其他降解产物,这些降解产物可能有可能限制这些材料的性能,从而限制了这些材料作为CIB中潜在电池电极的性能。
近年来,电动汽车市场的增长显着增长。该行业的主要目标是降低生产成本。值得注意的是,构成总生产成本的40%的电池组将其中约64%分配给电极的制造。监视关键电池参数,例如厚度,负载,密度,电导率和孔隙率,以最大程度地减少电极生产过程中的废物。直到最近,还没有能够模拟这些参数的技术。但是,Terahertz技术已成为一种评估电池电极的强大,无损和安全的方法。电池电极涂在由铝和铜等材料制成的底物上。由于METELS完全反映了Terahertz波,因此可以在反射模式下测量电极。这种方法允许确定涂层的厚度及其复杂的折射率,可以解释以推断关键电极参数。在我们的研究中,我们利用了Teraview的最新进步Teracota,Teracota是一种设计用于工业应用的Terahertz系统,配备了自我引用的Terahertz传感器。传感器安装在龙门上,提供了电极加载的Terahertz图像,并可以与光学图像进行直接比较,从而揭示了阴极上的缺陷。当比较通过Terahertz传感器获得的密度测量与实验室中测量的密度测量值时,我们达到了0.01 g/cm3的精度。关键字:ndt; Terahertz;光谱;电池电极;电动车辆此外,通过Terahertz系统的厚度测量与使用毫米在小于1 µm以内获得的厚度测量。同样,当比较通过Terahertz与通过四点探针测量的DC电导率进行比较时,趋势是一致的。正在进行的孔隙率进行的研究表明,折射率与特定电极集的功率相关,表明可能具有更广泛的应用。这种全面的方法证明了将Terahertz技术集成到电池电极制造过程中的重要优势,从而通过提高效率和降低浪费来彻底改变行业。
先前的研究表明,锂离子电池中容量褪色的主要原因是石墨电极处发生缓慢的侧面反应,这不可逆地消耗了锂库存。18-24这些副反应是由于石墨SEI的稳定性有限或保护效率而发生的;因此,对石墨SEI的研究是电池研究中最重要的领域之一。25 - 29同样,对锂金属阳极上SEI形成的研究对于高能锂金属阳极电池的发展至关重要,以及改善对锂镀层反应的理解,这些反应严重限制了石墨基锂离子电池的寿命。30-33然而,当前对这些复杂反应的理解受到限制,对于石墨和金属阳极的SEI反应机理和气体形成特性的差异知之甚少。在这项工作中,我们结合了操作数压力测量和在线电化学质谱法,以研究在含有石墨和金属电极的电池中进化和消耗的气体。通过比较锂半细胞中石墨的气体形成特性,在具有LifePo 4计数器电极的细胞中,我们证明了锂
多功能结构电池对各种高强度和轻量级应用都具有很高的兴趣。结构电池通常使用原始的碳纤维作为负电极,功能化的碳纤维作为正电极,以及机械强大的锂离子运输电解质。然而,基于碳纤维的阳性电极的电化学循环仍限于液体电解质的测试,该测试不允许以真实的方式引入多功能性。为了克服这些局限性,开发了带有结构电池电解质(SBE)的结构电池。这种方法可提供无质量的能源存储。电极是使用经济友好,丰富,廉价和无毒的铁基材料(如Olivine Lifepo 4)制造的。氧化石墨烯以其高表面积和电导率而闻名,以增强离子传输机制。此外,固化吸尘器注入的固体电解质以增强碳纤维的机械强度,并为锂离子迁移提供了介质。电泳沉积被选为绿色过程,以制造具有均匀质量负荷的结构阳性电极。可以在C/20时达到112 mAh g-1的特定能力,从而使Li-ion在SBE的存在下平稳运输。阳性电极的模量超过80 GPa。在各种质量载荷中都证明了结构性电池阳性的半细胞,从而为消费技术,电动汽车和航空航天部门的多种应用而量身定制它们。
碳材料在电化学储能中起着重要作用,因为它们具有低成本、高可用性、低环境影响、表面功能团、高电导率以及热稳定性、机械稳定性和化学稳定性等优点。目前,碳材料可以被认为是超级电容器和电池领域探索最广泛的材料,超级电容器和电池是需要高功率和高能量的广泛应用的设备。然而,与所有技术一样,也有一个适应和优化的过程;因此,碳材料一直在与新兴的进步保持一致。同样,多年来,人们发现了生产更适合储能的碳的新方法和新工艺,使它们与金属基化合物产生良好的协同作用,以满足当前标准。在这项工作中,我们汇集了碳材料领域的进展
单剂量的psilocybin是一种迷幻的,急性引起时空感知和自我溶解的扭曲,在人类临床试验中会产生快速而持久的治疗作用1-4。在动物模型中,psilocybin在皮质和海马5-8中诱导神经可塑性。尚不清楚人脑网络如何变化与迷幻药的主观和持久作用有关。在这里,我们通过纵向精确的功能映射跟踪了个体特异性的大脑变化(每个参与者大约有18个磁共振成像访问)。在高剂量psilocybin(25 mg)和哌醋甲酯(40 mg)之前,期间,期间和持续3周进行追踪健康成年人,并在6-12个月后带回额外的psilocybin剂量。psilocybin在皮质和亚皮层中大大中断的功能连通性(FC),急性导致比哌醋甲酯大三倍以上。这些FC的变化是由空间尺度(Areal,Global)之间的大脑对同步的驱动的,这些变化通过减少网络之间的相关性和反相关性来溶解网络区分。psilocybin驱动的FC变化在默认模式网络中最强,该模式网络连接到前海马,并被认为会产生我们的时空感,时间和自我感。FC变化中的个体差异与主观迷幻体验密切相关。执行感知任务减少了psilocybin驱动的FC变化。psilocybin导致前海马和默认模式网络之间FC持续下降,持续数周。持续减少海马默认模式网络连接性可能代表了迷幻药的预防和治疗效应的神经解剖学和机械相关性。
生态环境的迫在眉睫的危机降解和以化石燃料为主的不可再生能源的消耗促进了全球清洁新能源技术的繁荣发展,例如太阳能,风能,水能和全球生物量。1 - 3,对储能技术的需求不断提高,电池储能实施代表了一种有希望的解决方案,同时解决了可再生能源的间歇性和分数问题。在电池系统的支持下,可以显着增强可再生能源的利用,以存储不稳定的能源(例如太阳能和风),并突破了气候,时间和地理条件所表现出的实际应用场景的局限性,从而遏制碳的发育,并推动能源系统的开发,并朝着更加清洁的范围来驾驶,并逐渐驾驶,并有效地 - 逐渐效仿。4 - 7
1医学与药学学院微生物,血液学和免疫学系,DSchang大学,P.O。Box 96, Dschang, Cameroon 2 Laboratory of Tropical and Emerging Infectious Diseases, Buea, Cameroon 3 Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium 4 Department of Biomedical Sciences, Faculty of Health Sciences, University of Bamenda, P.O.Box 39,Bambili,喀麦隆5综合系统生物学研究所(I2SYSBIO),Valencia的CSIC-大学,Paterna 46980,西班牙6日6医学实验室科学系,Bamenda大学卫生科学学院,P.O. BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。 box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国>Box 39,Bambili,喀麦隆5综合系统生物学研究所(I2SYSBIO),Valencia的CSIC-大学,Paterna 46980,西班牙6日6医学实验室科学系,Bamenda大学卫生科学学院,P.O.BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。 box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国>BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国
可逆质子陶瓷电化学电池(R-PCEC)具有在中温下高效发电和绿色制氢的潜力。然而,传统空气电极在低温下工作的氧还原反应(ORR)和氧析出反应(OER)动力学缓慢,阻碍了 R-PCEC 的商业化应用。为了应对这一挑战,这项工作介绍了一种新方法,该方法基于同时优化体相金属-氧键和原位形成金属氧化物纳米催化剂表面改性。该策略旨在加速表现出三重(O 2 − 、H + 、e − )电导率的空气电极的 ORR/OER 电催化活性。具体来说,这种工程空气电极纳米复合材料-Ba(Co 0.4 Fe 0.4 Zr 0.1 Y 0.1 ) 0.95 Ni 0.05 F 0.1 O 2.9- 𝜹 在 R-PCEC 中表现出显著的 ORR/OER 催化活性和出色的耐久性。峰值功率密度从 626 提高到 996 mW cm − 2 ,并且在 100 小时循环期内具有高度稳定的可逆性,证明了这一点。这项研究提供了一种合理的设计策略,以实现具有出色运行活性和稳定性的高性能 R-PCEC 空气电极,从而实现高效和可持续的能源转换和存储。