波纹现象和曲率效应可提高稳定性并产生各向异性,以及增强的机械、光学和电子响应。双层石墨烯中的霍尔效应[1]和 MoS 2 中形成的人造原子晶体[2]就是很好的例子,它们表明电导率与偏离完美平坦结构之间存在很强的相关性。最近,铁电畴壁作为一种全新类型的二维系统出现,其形貌和电响应之间具有特别强的相关性。[3–6] 畴壁表现出 1-10 Å 数量级的有限厚度,因此通常被称为准二维系统。除了有限的厚度和与波纹二维材料类似之外,这些壁并不是严格意义上的二维,因为它们不会形成完全平坦的结构。弯曲和曲率自然发生,以尽量减少静电杂散场,确保机械兼容性,或由于导致畴壁粗糙的点缺陷。[7–10] 重要的是,相对于主体材料电极化的任何方向变化都会直接导致电荷状态的改变,从而导致局部载流子
由于普克尔斯效应和克尔效应的结合,电光 (EO) 聚合物的折射率可以通过外部电场改变。在由基质聚合物和嵌入的 EO 发色团组成的客体-主体系统中,普克尔斯效应依赖于可电极化的 EO 发色团的优先空间取向,这通常是通过在施加外部场的同时在高温下极化 EO 聚合物材料而引起的。EO 发色团由通过 π 电子共轭桥相互作用的电子给体和受体基团组成,其特性是 EO 聚合物设计的重要因素。为了最大程度地发挥普克尔斯效应,具有高玻璃化转变温度和分子尺寸相对较大的 EO 发色团的聚合物具有优势,因为它们可以提供最佳的取向稳定性 [ 1 ],这不仅在客体-主体系统中实现,而且在 EO 发色团与主体聚合物共价结合的材料中也实现了 [ 2 ]。在极化过程中,通过热 [ 3 ] 或光化学 [ 4 ] 交联主体聚合物也可提高取向稳定性。电光聚合物在电信领域的应用已被广泛探索 [ 5-7 ],其快速时间响应、低光损耗、高电光活性、稳定性和易于加工等特点已被用于空间光调制器 (SLM) 的开发 [ 8 ]。因此,最近的大部分研究活动都集中在开发近红外波长范围的电光聚合物 [ 9-12 ]。虽然关于可见光范围的电光聚合物的报道相对较少,但此类材料的未来应用可能在于可调光学滤波器和超声波的光学检测,例如用于生物医学光声 (PA) 成像研究的可调法布里-珀罗 (FP) 传感器 [ 13-16 ]。对于此类应用,需要在可见光波长区域具有高度透明性的新型电光聚合物。传统的近红外 EO 发色团虽然通常具有较高的