锂离子电池(LIB)是移动设备和电动汽车(EV)的重要组件,因为它们的寿命很高,寿命很长。但是,为了满足对电气设备的不断增长的需求,必须进一步提高LIB能量密度。阳极材料是锂电池的关键组成部分,可显着提高总能量密度。libs是电动汽车和储能中广泛使用的电化学电源。libs被证明是一致的,因为它们具有优质的功率密度,与其他类型的可充电电池相比,它与阴极类型直接相关,寿命延长。libs是通过合适的电解质通过复杂途径开发的,该途径几乎相似地相位。这项工作集中在碱金属离子(LI +)中插入石墨中,总结了实验和理论计算的重要进展,这些计算是密切的宿主 - 阵营关系及其基本力学的基础。这项研究阐明了插入机制对电极表面的影响,以实现高性能的LIB。锂金属离子在分层电极材料中被插入单价和多价离子中。这将使在存储和转换应用中的宿主材料中更好地理解互化化学。这篇评论强调了使用不同类型的电极材料改善其性能的锂互插性化学对电池电池的影响。它还研究电极性能对LIB技术的影响。
北京理工大学光学与光子学院,北京,100081,中国 电子邮件:yuanyue000418@163.com 收稿日期:2022 年 5 月 1 日/接受日期:2022 年 6 月 1 日/发表日期:2022 年 7 月 4 日 本文重点研究了碳和氮掺杂碳作为超级电容电极材料的制备、结构和电化学表征。电极材料是通过粉碎、氧化预处理和键合、碳化和活化制备的,聚合物材料加工成碳基材料。为了制备碳气凝胶电极材料,采用富氮前驱体方法通过氮掺杂来改变获得的碳基底材料。 SEM 和 XRD 对形貌和晶体结构进行分析表明,掺杂样品中引入了氮,碳电极表面覆盖着云状团簇和不均匀的聚集碳颗粒,而 N 掺杂碳样品具有海绵结构,其中交织着类似石墨的薄片,具有更高的粗糙度和孔隙率,以及更大的表面积。使用循环伏安法 (CV) 和恒电流充放电 (GCD) 循环对制备的碳基材料进行电化学研究表明,N 掺杂碳比对照样品具有更高的电化学电容性能,以及理想的快速充放电性能和功率器件的高功率容量。在 1 A/g 的电流密度下,碳和 N 掺杂碳的比电容分别为 13.56 和 192.12 F/g,这意味着 N 掺杂样品的比电容比未掺杂材料提高了 14 倍。经过 10000 次循环后,N 掺杂碳的循环稳定性显示出几乎 108% 的电容保持率。根据 N 掺杂碳超级电容电极性能与早期关于超级电容器中多孔碳材料的报道的比较,N 掺杂碳超级电容电极的比电容、功率和能量密度与其他报道的 N 掺杂多孔碳结构的值相当或更好。这些测试表明,使用所述方法生成的氮掺杂碳电极材料具有较低的内阻,并且可以在超级电容器中保持良好的电化学性能。关键词:氮掺杂碳;电化学性能;富氮前体;超级电容电极材料