过去,网络攻击尚未出现在我们的世界中。控制系统的故障仅被视为机械设备故障。客户的安全很少受到黑客通过远程访问网络渠道的威胁。如今,电子控制系统容易受到不同类型的攻击。例如,汽车可以通过各种攻击媒介被黑客操纵[1]-[4]。在本文中,我们希望在恶意攻击者试图接管它时找到正确的操作员。以前,汽车、机器人等控制系统仅由现场人工操作员处理。逐渐地,控制权被授予工业自主控制系统,然后通过网络通信渠道授予远程访问网络系统。这种范式
该坦桑尼亚标准草案与国际电工委员会制定的国际标准 IEC 60730-1: 2022 自动电气控制 - 第 1 部分:一般要求相同。
磁性纳米 - 凯林会产生量化的螺旋性激发,并且具有独特的螺旋度的纳米丝孔之间的量子隧道表明这些颗粒的量子性质。实验方法能够无损坏解决拓扑自旋纹理的量子方面,它们的局部动力学响应以及它们的功能现在有望实现量子操作的实用设备体系结构。具有在原子层进行测量,工程和控制物质的能力,纳米 - 千里是有机会将思想转化为固态技术的机会。概念验证设备将对螺旋性提供电气控制,为基于天空的量子计算机实现量子旋转状态的有希望的新途径。这种观点旨在讨论量子磁性和量子信息的新研究途径中的发展和挑战。
电气控制与监控一系列易于维护的产品伴随着运行过程的详细工程。近年来,工业 IT 系统的持续改进使 Ovivo 能够提供越来越复杂的功能和服务。WAN 以太网连接提供软件协助和工厂分析,因此 Ovivo 团队可以快速响应操作员请求并确保安全的工艺处理以及最佳的工厂监控。监控工作站使操作员能够控制和监控所有相关的工艺信息,如阈值、顺序启动和其他优化数据。无扰动和备用切换程序确保完全可用性和可靠性。抛光部分能够以独立模式运行,大大限制了纯水进入工艺时停机的风险。通过 Ovivo 工厂审计,我们工程师的丰富经验和成熟的设计能力可确保最大可靠性和最低拥有成本。
Testek 和汉密尔顿桑德斯特兰公司签署了许可和合作伙伴关系协议,为汉密尔顿桑德斯特兰公司的电力发电系统控制提供值得信赖、经过批准和验证的测试设备。在大多数情况下,Testek 会根据与汉密尔顿桑德斯特兰公司的合同在飞机机队引入之前开发测试程序和适配器,确保航空公司获得测试设备解决方案。Testek 是汉密尔顿桑德斯特兰公司的唯一许可人和合作伙伴,没有其他测试设备制造商为汉密尔顿桑德斯特兰公司的飞机电气控制产品线提供这种许可和合作伙伴关系。汉密尔顿桑德斯特兰公司知道 Testek 30 多年来一直为航空业提供持续成功的测试系统,并符合许可和合作伙伴关系的标准。
摘要 - 基于域墙(DW)运动的旋转逻辑设备提供了灵活的体系结构,以存储和携带逻辑信息在电路中。在此设备概念中,信息以多个磁性隧道连接(MTJ)共享的磁道磁态进行编码,并通过DW运动处理。在这里,我们证明可以使用新型的MTJ堆栈来实现这种基于纳米级DW的逻辑设备的全电动控制。除了各向同性的场驱动运动外,我们还显示了由电流驱动的DWS的方向运动,这是逻辑操作的关键要求。使用DW运动对逻辑门的完整电气控制。我们的设备在全晶片的IMEC的300毫米CMOS Fab中制造,这清除了大规模集成的路径。因此,此概念证明为逻辑和神经形态应用提供了高性能和低功率DW设备的潜在解决方案。
Valleytronics的新兴领域利用了电子自由度,类似于电子和自旋设备如何利用电子自由度的电荷和自旋程度。Valleytronic设备的工程通常取决于山谷和其他自由度之间的耦合,例如旋转,从而产生了山谷旋转,其中外部磁场操纵了存储在谷地中的信息。在这里,提出了一个山谷无间隙的半导体作为潜在的电气控制的valleytronic平台,因为山谷的自由度与载体类型(即电子和孔)耦合。山谷自由度可以通过通过设备门电压调整载体类型来电气控制。我们演示了通过使用Haldane和改良的Haldane模型在蜂窝晶格中实现山谷无间隙的半导体的建议。在全电动控制的山谷滤波器设备设置中,进一步研究了系统的山谷载波耦合的运输属性。我们的工作突出了山谷无间隙半导体对Valleytronic设备的重要性。
Moiré超级晶格在Van der Waals的异质结构中的扭曲工程可以操纵山谷中层Incepitons(IXS)的山谷物理学,为下一代谷化设备铺平了道路。然而,到目前为止,在电气控制的异质结构中尚未研究对山谷极化上激素电位的扭曲角度依赖性控制,需要探索下面的物理机制。在这里,我们证明了莫伊尔时期的极化切换和山谷极化程度的依赖性。我们还找到了揭示激子电势和电子孔交换相互作用的扭曲角度调节的机制,这些机制阐明了实验观察到的IXS的扭曲角度依赖性山谷极化。此外,我们根据极化开关实现了可谷化的设备。我们的工作通过在电控制异质结构中调谐扭转角来证明了IXS山谷极化的操纵,这为在互惠设备中开放了电气控制山谷自由度的途径。
二维(2D)电子系统中的表面等离子体引起了人们对其有希望的轻质应用的极大关注。然而,由于难以在正常的2D材料中同时节省能量和动量,因此表面等离子体的激发,尤其是横向电(TE)表面等离子体。在这里我们表明,从Gigahertz到Terahertz机制的TE表面等离子体可以在混合介电,2D材料和磁体结构中有效地激发和操纵。必需物理学是表面自旋波补充了表面等离子体激发的额外自由度,因此大大增强了2D培养基中的电场。基于广泛使用的磁性材料,例如Yttrium Iron Garnet和Difuluoride,我们进一步表明,等离子体激发在混合系统的反射光谱中表现为可测量的浸入,而浸入位置和浸入深度可以通过在2D层和外部磁性磁场上的电气控制很好地控制。我们的发现应弥合低维物理学,等离子间和旋转的领域,并为整合等离子和旋转器设备的新颖途径打开新的途径。
控制集成光子电路中组件的控制对于实现可编程功能至关重要。等离子设备的操作带宽通常一旦制造就无法调整,尤其是在可见的方向上。在这里,我们演示了可见式示例的这种设备的电气控制,以进行外径光学传输(EOT)。(i)EOT设备的操作频率可以通过通过纳米线施加的偏置电压调节。(ii)或在给定频率下,可以连续调整EOT信号(标准化为入射场),例如10-4至0之间。4。这对应于3个幅度调制深度。我们利用嵌入到纳米骨中的量子发射极(QE)引起的FANO共振。外部偏置电压调音量量子量量子的共振。我们还讨论了表面等离子体极化子的寿命延伸,以响应超短脉冲。我们提出的方法提供了对EOT信号的主动电子控制,这使其成为集成光子电路中的可行且紧凑的元素,用于生物感应,高分辨率成像和分子光谱应用。