电容性隔离产品(例如隔离器,隔离放大器,隔离电源产品等)是将输出与输入分开的设备,避免了两个系统之间的不需要直接和瞬态电流,而信号和功率可以正确传输。例如,隔离器可以将引用不同水平引用的信号,保护敏感的控制模块免受高压的影响,并在发生电气故障时最小化故障覆盖率。对于这些孤立的产品,隔离屏障的故障会导致系统故障和潜在的操作员安全危害。在这里,我们讨论了隔离失效模式的机制以及推荐的电容隔离设备以避免隔离失败的方法。
在汽车电子领域,实现高设备可靠性是一项基本要求。操作典型的汽车负载(例如灯泡或伺服电机)会给设备本身带来很大的热应力,因为这些负载具有高浪涌电流、长关断时间和高电感。因此,切换这些负载意味着高开关损耗、长时间的开启和关闭瞬态以及严重的过热。开关将循环数千次甚至数百万次,相应的功率循环将引起热机械性能下降,最终导致电气故障。因此,有必要正确模拟此类功率循环以提高设备可靠性并了解故障机制,特别是准确的热模型是得出所有后续电热和热机械结论的第一步。
液压系统为表面执行器提供主要和备用液压。对于给定轴上的三个类似的运动反馈传感器故障,使用数字直接电气连接 (DEL) 模式完成控制,该模式提供从飞行员输入传感器到控制表面执行器的直接电气路径。如果三个数字处理器发生故障,则纵向和滚转控制通过对稳定器的备用机械模式完成。机械控制是传统的电缆、推杆和曲柄系统。在机械备用模式下,操纵杆到稳定器传动装置通过非线性连杆进行修改,以提供操纵杆力和偏转或所有飞行条件之间的所需灵敏度。在机械模式下,可通过模拟 DEL 路径控制副翼或方向舵。如果发生完全电气故障,则只能对稳定器进行机械控制。
电动机是电力驱动装置中最重要的部件,其运行有时会引发各种故障。除了轴承元件故障外,电气故障是电动机故障的第二大常见原因。据美国电力研究机构 (EPRI) 统计,此类设备所有故障中近 48% 是由于电气系统问题引起的。这些故障可能是转子故障 (12%) 或绕组故障 (36%)。在剩余 52% 的案例中,已证实存在部件的机械损坏。绕组缺陷可能是由于潮湿、污染、绝缘层老化、热过载、电击、电线损坏等原因造成的。在这些情况下,可以观察到能量穿过绝缘层,导致工作温度升高和系统应力增加,直到绕组发生故障。当电动机遭受上述任何损坏时,通常损坏是不可逆的,并导致其效率逐渐下降 [3]。
飞机线路老化对商用和军用飞机都构成了重大威胁。最近发生的涉及飞机线路老化的空难清楚地表明,线路老化可能造成灾难性后果。电气线路系统老化可能导致设备关键功能丧失或设备运行信息丢失。任何一种结果都可能导致电气故障,从而引起烟雾和火灾,从而对公众健康和飞机安全造成危害。传统的维护实践无法有效地管理线路老化问题。需要更积极主动的方法,以便可以预测飞机线路故障,并在故障发生之前修复或更换线路系统。本论文将确定线路系统老化的影响、对飞机安全性的潜在影响以及有关飞机线路安全性的规定。本论文将评估航空业的常规线路维护实践和过渡线路完整性计划。
柔性电子设备在可穿戴设备、植入式设备、机器人和显示器等许多未来技术中都有着广阔的应用前景。在各种机械柔性中,可拉伸性是一项重大挑战。一个特别艰巨的目标是实现一种高性能透明电极,这种电极既能承受拉伸,又能大规模生产,同时又能避免对设备密度产生额外的限制。在这项研究中,通过对 3D 波纹图案和平面表面的统计比较,证明了 3D 波纹图案表面使沉积的氧化铟锡电极的应变性能提高了三倍,其中氧化铟锡电极被拉伸至电气故障。此外,该平台减轻了残余薄膜应力,使基板的处理更加容易。这项研究证明了使用可扩展平台实现未来电子设备可拉伸性的可行性,该平台仅使用常规材料和制造步骤就结合了高性能透明电极材料。
隧道火灾是一种致命的危险源,每年在世界各地造成重大人员伤亡和经济损失。1987年,阿塞拜疆因电气故障引发的特大隧道火灾造成289人死亡(Haack 2002)。2020年,韩国三美2号隧道发生火灾,数十辆坦克和卡车相撞后,火灾造成4人死亡,40多人受伤。统计显示,2000年至2016年,中国共发生161起中大型隧道火灾事故(Ren等。2019)。一旦发生隧道火灾,可能会造成致命的后果和灾难性的经济损失(Casey 2020;Chen 等2020)。隧道火灾后果严重,在通风不良、高温、高密度烟雾和有毒气体的空间中,人员疏散十分困难。此外,隧道内火灾发展迅速、情况复杂,难以指导疏散、救援和灭火活动。因此,隧道消防迫切需要准确、及时、智能的火灾识别系统(Beard 2009;Chen 等2020)。
本文档提供了指南,目的是防止对ABB Rever Protection继电器和数字变电站自动化产品中的固件和配置文件进行未经授权的修改。保护继电器是电力系统中的关键组件,通过监视和控制电路来确保安全可靠的操作。对其固件和配置的不恢复更改会导致严重的操作中断和安全危害。为了减轻这些风险,这些准则涵盖了最佳实践,安全措施和旨在维护这些设备免受未经授权访问和篡改的操作控制。关键建议包括实施系统硬化,强大的身份验证机制,通过实施深度内防中的防御能力来维持固件完整性,定期审核和监视系统活动以及建立强大的访问控制策略。通过遵守这些准则,资产所有者可以增强其保护继电器和数字变电站自动化产品的安全性和弹性,因此它们运行正常,并继续保护关键基础设施免受电气故障和其他异常的影响。
高可靠性要求发动机控制单元如今已出现在许多应用中,通常涉及安全关键考虑,要求在无法容忍意外行为的环境中具有高可预测性和高可靠性的操作!典型应用包括航空电子设备、汽车和货运站重型机械的操作。这些环境表现出高水平的安全敏感方面,其中 ECU 在紧急情况下无法以适当的方式运行可能对生命和/或财产构成威胁,从而证明增加测试成本是合理的。有许多例子表明 ECU 的安全关键操作很重要。对于航空电子设备,一个这样的例子是喷气式飞机发动机的全权数字电子控制器 (FADEC) 的设计验证。FADEC 实际上是喷气式发动机的大脑,控制飞机发动机性能的各个方面,同时提供完全冗余以确保安全关键可靠性。可以理解的是,政府对商用飞机 FADEC 模块测试有着严格的规定,要求在各种硬件故障条件下安全或受控运行。故障插入目前在汽车行业使用的一个示例是动力传动系控制模块 (PCM) 整体测试的一部分。PCM 是现代车辆中最复杂的电子控制单元之一,需要对其功能进行严格而全面的测试。PCM 故障的后果可能会对 X-by-Wire 应用(一个统称,指在车辆中添加电子系统以增强和取代以前通过机械和液压系统完成的任务,如制动或转向)产生更大的影响,这些测试方法的重要性日益增加。“故障插入测试是 ECU 验证的一个重要方面,测试系统故障的想法并不新鲜。”由于当今 ECU 设备的精密性和复杂性很高,因此需要特殊的测试方法。ECU 测试的一个重要方面是将电气故障引入系统,模拟由于腐蚀、短路/开路以及因老化、损坏甚至安装错误而导致的其他电气故障而可能发生的各种情况。故障插入测试是 ECU 验证的一个重要方面,测试系统故障的想法并不新鲜。这种测试方法不仅容易出现人为错误,而且耗时 - 而时间就是金钱。传统测试方法通常涉及手动将电缆插入和拔出配线架,这远非理想。Pickering Interfaces 故障插入 BRIC TM 交换解决方案针对 ECU 验证,为这些实际场景提供了更为复杂的测试方法。
第 1 章全面回顾了室内危害管理以及目前用于此目的的智能建筑技术,例如 BIM、IoT 和 AI。第 2 章介绍了综合室内危害管理系统的方法。该系统包含的室内危害包括火灾、电气故障、室内空气污染 (IAP)、煤气泄漏、水泄漏、入侵和医疗保健。第 3 章介绍了结合 BIM 和智能技术的智能消防疏散系统的相关研究。介绍了消防疏散管理的最新进展。详细描述了所使用的材料和方法。该系统已在法国里尔大学的研究大楼 - LGCgE 实验室中应用和验证。结果通过模拟建筑物中的火灾事件显示了该系统的能力。第 4 章介绍了评估和改进高等教育机构 COVID-19 措施的全面方法。本研究详细描述了基于 BIM 和问卷调查方法所使用的方法和材料。所提出的方法应用于法国北部的里尔理工学院工程学院。结果表明,BIM 模型提供了有价值的服务,问卷调查为管理层提供了必要的信息。关键词:建筑、室内、危害、安全、智能建筑、BIM、人工智能、火灾、COVID-19、问卷调查。