2 器件特性 ................................................................................................................................ 4 2.1 电气特性(辐照前) ...................................................................................................................... 4 2.2 源漏二极管额定值和特性(辐照前) ............................................................................................ 5 2.3 热特性 ...................................................................................................................................... 5 2.4 辐射特性 ...................................................................................................................................... 5 2.4.1 电气特性 — 总剂量辐照后 ...................................................................................................... 5 2.4.2 单粒子效应 — 安全工作区 ...................................................................................................... 6
2 器件特性 ................................................................................................................................ 4 2.1 电气特性(辐照前) ...................................................................................................................... 4 2.2 源漏二极管额定值和特性(辐照前) ............................................................................................ 5 2.3 热特性 ...................................................................................................................................... 5 2.4 辐射特性 ...................................................................................................................................... 5 2.4.1 电气特性 — 总剂量辐照后 ...................................................................................................... 5 2.4.2 单粒子效应 — 安全工作区 ...................................................................................................... 6
2 器件特性 ................................................................................................................................ 4 2.1 电气特性(辐照前) ...................................................................................................................... 4 2.2 源漏二极管额定值和特性(辐照前) ............................................................................................ 5 2.3 热特性 ...................................................................................................................................... 5 2.4 辐射特性 ...................................................................................................................................... 5 2.4.1 电气特性 — 总剂量辐照后 ...................................................................................................... 5 2.4.2 单粒子效应 — 安全工作区 ...................................................................................................... 6
2 器件特性 ................................................................................................................................ 4 2.1 电气特性(辐照前) ...................................................................................................................... 4 2.2 源漏二极管额定值和特性(辐照前) ............................................................................................ 5 2.3 热特性 ...................................................................................................................................... 5 2.4 辐射特性 ...................................................................................................................................... 5 2.4.1 电气特性 — 总剂量辐照后 ...................................................................................................... 5 2.4.2 单粒子效应 — 安全工作区 ...................................................................................................... 6
2 器件特性 ................................................................................................................................ 4 2.1 电气特性(辐照前) ...................................................................................................................... 4 2.2 源漏二极管额定值和特性(辐照前) ............................................................................................ 5 2.3 热特性 ...................................................................................................................................... 5 2.4 辐射特性 ...................................................................................................................................... 5 2.4.1 电气特性 — 总剂量辐照后 ...................................................................................................... 5 2.4.2 单粒子效应 — 安全工作区 ...................................................................................................... 6
7.1 绝对最大额定值 ................................................................................................ 5 7.2 建议工作条件 ................................................................................................ 6 7.3 直流电气特性 (VDD = 5.0V, 温度 = 25℃ ) ........................................ 6 7.4 交流电气特性 (VDD = 5.0V, 温度 = 25 ºC ) ........................................................ 6 8. 传感器像素阵列映射 ................................................................................................ 7 9. 典型应用电路 ............................................................................................................. 8 10. 封装 ............................................................................................................................. 9 11. 装配图 ............................................................................................................................. 9 12. 修订历史 ................................................................................................................ 10
摘要:光伏组件通常在标准测试条件下的实验室中进行额定值和测试。由于环境条件和运行参数的随机性,例如目标位置的地形、坡度、方向、海拔、反照率和现有技术,此类条件无法在室外维持。由于双面组件能够从正反两面发电,其背面对发电量的影响仍不确定。本研究旨在通过实验分析和预测纳瓦布沙阿室外条件下半切双面PERC单晶光伏(PV)组件的电气特性。为此,我们在一栋部门大楼上方安装了一套实验系统,用于数据记录和分析。使用测光表(HD-2302)测量研究地点的太阳总辐射(Grad),并使用数字风速计PROVA AVM-05测量环境温度(Ta)、风速(Ws)和相对湿度(Rh)。使用PROVA-1101记录组件正反两面的电气特性。这些数据是在2023年2月至6月的五个月内,从上午9:00到下午4:00,每小时一次持续收集的。此外,我们还使用了不同的现有模型,根据记录数据预测双面光伏组件的电气特性。在分析期间,我们观察到组件正面产生了约91%的输出功率,而背面则占9%。我们发现,Evan-Florschuetz模型方程更适合预测双面组件的效率,因为它基于测量数据的误差更小。关键词:环境温度、半切双面光伏组件、湿度、统计分析、太阳辐射、风速。
6.1 绝对最大额定值.................................................. 7 6.2 ESD 额定值............................................................... 7 6.3 建议工作条件............................................................... 8 6.4 热信息............................................................................... 9 6.5 功率额定值................................................................. 9 6.6 隔离规格................................................................. 10 6.7 安全相关认证....................................................... 12 6.8 安全限值................................................................. 12 6.9 电气特性 — 5V 电源.................................... 14 6.10 电源电流特性 — 5V 电源.................................... 14 6.11 电气特性 — 3.3V 电源.................................... 15 6.12 电源电流特性 — 3.3V 电源.................................... 15 6.13 电气特性 — 2.5V 电源.................................... 16 6.14 电源电流特性 — 2.5V 电源.................................... 16 6.15 开关特性 — 5V 电源.................................... 17 6.16 开关特性—3.3 V 电源..................................... 17 6.17 开关特性—2.5 V 电源..................................... 18 6.18 绝缘特性曲线............................................... 18
4.1.电气特性 ................................................................................................................................................................ 4 4.2.时序图 ................................................................................................................................................................ 5 4.3.时序特性 ................................................................................................................................................................ 5 4.4.典型特性 ................................................................................................................................................................ 6
现代纳米电子学的发展依赖于技术进步和能够改善系统性能的新型器件概念。科学家和工程师的不懈努力使得现代集成电路 (IC) 和性能增强器的尺寸不断缩小,从而能够保持 IC 性能的进步 [1,2]。与此同时,人们也投入了类似的努力来开发现代电路中不可或缺的存储器件。然而,为了保持这种进步,需要新型器件。近年来,出现了新的存储器件概念,例如电阻式 RAM (RRAM) [3–6]、自旋转移力矩 RAM (STT-RAM) [7,8]、铁电 RAM (FeRAM) [9] 和相变 RAM (PCRAM) [10]。电阻式 RAM (RRAM) 因其结构简单、能够缩小器件尺寸以实现高密度、低功耗和高速运行而备受关注。它们有可能以并行方式对大量数据进行计算,为了实现如此卓越的性能,人们测试了不同的新型计算范例,例如脑启发计算、内存计算、随机计算和神经形态计算 [11–13]。人们已经测试了各种氧化物材料作为 RRAM 器件中电阻切换层的候选材料 [14–16]。一些工作提出了对 SiO 2 作为这些器件的有前途的材料的研究 [17–20]。在我们最近的研究中,我们表明,Al/SiO 2 /n++-Si 材料堆栈中众所周知的氧化硅也可以表现出电阻切换特性 [21,22]。然而,很少有研究涉及温度对器件性能的影响 [23–25]。在这项工作中,我们研究了温度变化对器件电性能的影响,以研究它们的电传输机制并了解它们的行为。我们分析了电铸电压,并表明它