摘要:在电池储能系统(BESS)中部署的锂离子电池(LIB)可以降低发电部门的碳强度并改善环境可持续性。这项研究的目的是使用生命周期评估(LCA)建模,使用来自同行评审的文献以及公共和私人资源的数据,以量化钴的供应链沿供应链沿供应链量化,这是许多类型的LIB中的关键组成部分。该研究试图了解在生命周期阶段的位置,环境影响最高,从而强调了可以提高自由链供应链可持续性的行动。该LCA的系统边界是摇篮到门的。影响评估遵循食谱中点(H)2016。我们假设一个30年的建模期,并在第3年,第7和14年结束时进行了增强,然后在第21年完全替换。在场景中使用了三个炼油厂(中国,加拿大和芬兰),一系列矿石等级(NMC111,NMC532,NMC532,NMC622,NMC811和NCA),以更好地估计其对生命周期的影响。的见解是,根据与矿石等级的逆权法关系,几乎所有途径的影响都会增加;在中国以外的精炼可以将全球变暖潜力(GWP)降低超过12%; GWP对NCA和其他NMC电池化学中使用的钴的影响分别比NMC111低63%和45-74%。按单分析进行分析,海洋和淡水生态毒性是突出的。对于0.3%的矿石等级,加拿大路线的GWP值以58%至65%的速度降低,而芬兰路线的GWP值则下降了71%至76%。统计分析表明,电池中的钴含量是最高的预测因子(R 2 = 0.988),其次是矿石等级(R 2 = 0.966)和精炼位置(R 2 = 0.766),当分别评估相关性时。这里提出的结果指向可以减少环境负担的地区,因此它们有助于政策和投资决策者。
根据 NITI Aayog (2022) 的数据,印度电动汽车电池再利用市场的增长将从 2023 年的 2 GWh 增加到 2030 年的 128 GWh。为了加快这一增长速度,应重点改进当前的检测技术和政策,以确保电池的安全和可持续的可重复使用性和可回收性。有关退役电动汽车电池测试和认证的法规应成为核心。此外,测试技术的进步将是提高这些流程效率的关键。初创企业也应该抓住这个新兴领域的机遇,利用尖端的检测技术推动电池再利用和回收市场的创新和增长。
随着越来越多的可再生能源 (RES) 进入电网,由于 RES 固有的间歇性和不可预测性,高峰时段的供需平衡将成为一个越来越大的挑战。当风能和太阳能发电过剩时,电网级电池可以储存能量,并将其放电以满足传统上由联合循环燃气轮机 (CCGT) 电厂提供的可变峰值需求。本文从技术和环境角度评估了电池储存取代 CCGT 以应对英国当前和未来能源情景 (FES) 的可变峰值需求的潜力。技术分析结果表明,假设电池的尺寸针对国家电网提出的不同供需情景进行了优化,则电池能够分别在 2016 年、2020 年和 2035 年满足总可变峰值需求的 6.04%、13.5% 和 29.1%,而 CCGT 电厂则满足其余需求。具体而言,为了在 2035 年逐步淘汰英国电网中的 CCGT 可变发电,风能和太阳能的电力供应需要增加到国家电网 FES 预测供应量的 1.33 倍。通过简化的生命周期评估 (LCA) 研究和比较了用电池替代 CCGT 的环境影响。LCA 研究的结果表明,如果用电池代替 CCGT,可以减少高达 87% 的温室气体排放,即估计 1.98 MtCO 2 当量,最佳供应量为 29.1%,即 2035 年可变峰值需求。
镍采矿和精炼带有一定的碳足迹,但是有一些解决方案可以改善这种环境影响。温室气体(GHG)的排放量在硫酸镍生产地点之间的差异很大,具体取决于多种因素,包括部署的能源和生产技术。Minviro的分析表明,可以使用可再生能源的操作,并使用水透明术技术(例如Bioheap Leaching和压力氧化)具有最低的碳足迹。具体来说,比较六个硫酸盐生产路线表明,位于加拿大和芬兰的最佳性能设施的排放水平分别比行业平均水平低70%和63%。在相对端,将乳液的矿石加工成镍铁(NPI)到哑光到硫酸镍的产生的排放量是行业平均水平的5倍,而在印度尼西亚越来越流行的高压酸浸出(HPAL)途径几乎是行业平均值的两倍。
摘要。本文介绍了一种增强的能源管理策略,该策略采用了带有光伏(PV)模块的独立直流微电网中电池的电荷状态(SOC)。有效的能源管理对于确保微电网中负载单元的不间断电源至关重要。解决了外部因素所带来的挑战,例如温度波动和太阳辐照度的变化,可以部署能源存储系统,以补偿外部因素对PV模块输出功率的负面影响。所提出的方法考虑了微电网元素的各种参数,包括来自来源的可用功率,需求功率和电池SOC,以开发具有负载拆分能力的有效能量控制机制。通过考虑这些参数,该策略旨在优化可用资源的利用,同时确保可靠的连接负载电源。电池的SOC在确定最佳充电和排放曲线方面起着至关重要的作用,从而在微电网内实现了有效的能量管理。为了评估所提出方法的有效性,设计了算法并进行了模拟。所提出的算法通过结合功率和基于SOC的方法来有效控制来利用混合方法。通过分析仿真结果,发现所提出的方法能够传递预期的负载功率,同时以预定的SOC水平增加电池的生命周期。
可再生能源的日益整合使得电网平衡变得具有挑战性,因为它们具有间歇性。可再生能源可能会被削减,尤其是在生产超过需求或电网内出现输电和/或配电网络拥塞时。但是,如果使用电池存储,削减就变得没有必要,前提是电池存储具有足够的可用存储容量,可以在发电过剩时存储能量,并在高峰时段需求高时将其释放到电网。因此,电池存储的能量可以抵消昂贵且对环境有害的峰值电厂(例如开放式/联合循环燃气轮机)的供应。我们以英国为例,研究了利用大容量电池存储取代开放式和联合循环燃气轮机发电厂,利用风能削减能源的技术经济前景。我们开发了一种用于确定和优化锂离子型电池的技术经济模型。优化旨在确定存储在何种成本和规模下可以商业上适用于电网级能源应用。结果表明,在风电日均弃风率为 15% 且电池成本为 200 英镑/千瓦时的基本假设下,优化后的 1.25 GWh 电池每年可满足 285 GWh 的峰值需求,其对应的净现值为 2240 万英镑,内部收益率为 1.7%,回收期为 14 年。但是,要实现 8% 的内部收益率(投资的最低门槛收益率),电池成本必须低于 150 英镑/千瓦时。对弃风、放电深度、电池效率以及电池成本和收入等参数的敏感性分析表明,本研究考虑的所有技术经济参数都对电池储能用于电网的商业可行性有重大影响。关键词:电池储能系统 (BESS)、弃风、技术经济优化、开式/联合循环燃气轮机、电网级储能
Altiux Innovations是一个软件和产品工程服务组织,致力于帮助您加速物联网解决方案和产品的开发。我们在整个IoT开发周期中提供专门的工程服务,从咨询,设备工程,云和移动应用程序开发,数据分析以及支持和维护。Altiux已开发了一个IoT Toolkit -BoxPwr™。BoxPwr是一套为传感器节点和执行器,通信网关,边缘计算和云连接性的软件框架的生产套件,有助于加速物联网产品和解决方案开发。