微机电系统、微传感器、微型机器人、植入式医疗设备等先进微电子产品的出现,加速了片上微型电化学储能装置的发展。1 – 3 传统的电化学储能装置(如商用锂离子电池和超级电容器)采用夹层式电池结构,由于电池尺寸、外形尺寸和可集成性的限制,难以在某些微系统中应用。4 – 6 定制化的微电化学储能装置具有重量轻、形状多样、超紧凑的特点,可以与微系统集成,满足特定的片上应用需求。7,8 其中,微型锂离子电池(micro-LIB)具有相对较高的能量/功率密度和良好的循环寿命,被认为是微型电源的优选候选者。9 – 11
Cat ® 双向电源 (BDP) 逆变器 Cat BDP 逆变器是储能系统的核心。基于为 Cat 电力驱动机器开发的技术,Cat BDP 提供卓越的可靠性、耐用性和功能,包括:• 用于储能设备充电和放电的智能控制。• 每单位 2 个故障电流能力 • 静态无功补偿器 • 四象限输出功率工厂控制 • 获得专利的非线性下垂控制,可实现超快速响应 • 无缝模式转换 • 自动防孤岛 • 电网形成 • 电网跟踪 • 自主模式或远程控制模式 • 并联就绪 - 可以并联使用多个模块以将总输出增加到 100+MW 储能 • 先进的锂离子电池提供良好的能量密度、高放电/充电效率和高循环寿命。• 重型电池结构可在运输过程中提供隔振。应用 • 电网加固/电网稳定 • 发电机组瞬态辅助 • 黑启动能力/装置功率 • 备用功率容量
目前,全球能源格局正面临前所未有的危机。为了解决这些困难,创造高效可靠的能源存储和转换技术至关重要。本综述讨论了两项重要的储能技术:水分解和锂离子电池。锂离子电池以其更高的能量密度、更长的效率和更低的成本彻底改变了便捷设备和电动机。同时,水分解通过电解过程为高能量密度的清洁燃料氢气的生成提供了一条途径。在本分析中,我们将探索最新的突破以及最新的材料和催化剂,以提高水分解的生产率和经济可行性。讨论了提高锂离子电池性能和安全性的电极材料、电解质和电池结构。本综述还讨论了这些技术在可再生能源系统中的集成,强调了它们在实现碳中和方面的互补作用。通过全面分析当前的研究和未来方向,我们强调了水分解和锂离子电池在可持续能源领域的关键重要性。
在2022年,我们通过负责任的采购稳步向上迈进,并将我们的供应商和其他合作伙伴推向了合规和高质量的发展。作为负责任的关键矿产倡议(正式称为负责任的钴倡议)的成员,我们聘请了第三方审计机构作为飞行员,以增强阴极材料供应商的审计,以建立更透明的供应链。以客户为中心,我们在两个国家的五个地方扩大了生产,迈出了近150GWH,迈出了果断的一步,朝着大规模的发展迈出了一步。我们升级了产品,使我们的半实心和800VTC电池是第一个被批量生产并应用于车辆的电池。我们揭示了SPS(超级小袋解决方案),并优化了电池结构,进一步用“未来理想的电池”带头体验。始终与社区分享经济成果,我们为展示儿童的照顾做了很多事情。
卤化物钙钛矿最近已成为一种有前途的低成本、高效太阳能电池材料。5 通过采用全固态薄膜结构和用混合卤化物钙钛矿设计电池结构,基于钙钛矿的太阳能电池的效率从 2009 年的 3.8% 迅速提高到 2014 年的 19.3%。钙钛矿太阳能电池的出现彻底改变了该领域,不仅是因为它们效率迅速提高,还因为它们在材料生长和结构上具有灵活性。钙钛矿太阳能电池的卓越性能表明钙钛矿材料具有内在独特的 10 种特性。在这篇综述中,我们总结了最近关于卤化物钙钛矿材料的结构、电学和光学特性及其在太阳能电池中的应用的理论研究。我们还讨论了钙钛矿在太阳能电池中使用时面临的一些当前挑战以及可能的理论解决方案。
Zēlos 开发了一种独特的专利电池结构,可以稳定传统的一次性碱性 (Zn-Mn02) 电极,从而实现广泛的可充电功能。Zēlos 在 1 小时充电、1 小时放电的条件下进行了超过 1,400 次的深度循环,这是一个要求极高的测试方案。Zēlos 正在开发一种家用 LDES 解决方案,该解决方案有可能在成本、安全性和环境性能方面树立新的标准。Zēlos 的锌-二氧化锰电池具有实现高循环率和深度放电水平的潜力,使其适用于广泛的应用,特别是在安全性和成本至关重要的领域。Zēlos 电池采用水基、不易燃的电解质和无毒的地球丰富电极材料(如锌 (Zn) 和二氧化锰 (MnO2))制造。所有材料都具有高能量密度和低成本。
摘要:锂 - 离子电池在清洁运输系统中起着至关重要的作用,包括电动汽车,飞机和电动微型。电池电池的设计及其生产过程与它们的表征,监测和控制技术一样重要,以改善行业的运输和可持续性。近几十年来,解决所有提到的方面的数据驱动方法都以有希望的结果进行了大规模发展,尤其是通过人工智能和机器学习。本文介绍了可解释的机器学习中的最新开发,称为XML及其在锂离子电池中的应用。它包括对制造和生产阶段中XML的批判性审查,然后在使用电池时进行状态估计和控制。前者专注于XML,以优化电池结构,特性和制造过程,而后者则考虑了与健康状况,充电和能源状态相关的监测方面。本文通过对现有技术的理论方面进行全面审查并讨论各种案例研究,是为了告知该地区最先进的XML方法的堆栈持有人,并鼓励他们在过渡到Netzero的未来中从ML转向XML。这项工作还强调了电池社区的研究差距和潜在的未来研究方向。
大地板安装的电池组的现实振动测试,有时称为可充电储能系统(RESS),用于电池电动汽车(BEV)对于开发安全的新电池结构很重要。另一方面,实验室中最坏情况环境的现实复制的要求通常要求昂贵且复杂的基础架构。由于复杂性的增加而导致的环境复制质量和重要的成本驱动力的关键因素是设备必须能够复制所需的频率范围。贡献分析了第一个预测试活动中的数据,以证明为测试设备推导频段要求的可行过程。这里使用的关键方法是疲劳损伤光谱(FDS)分析振动可能导致某些感兴趣的失败机理的潜在损害,尤其是通过相应的双重量化量的“加权”,对应力幅度的相应双重量化依赖性而不是发生的负载周期。这可以很好地评估在某些频率范围内可以在所需的测试设备上选择有理合理且具有成本效益的选择。
Cat ® 双向电源 (BDP) 逆变器 Cat BDP 逆变器是储能系统的核心。基于为 Cat 电力驱动机器开发的技术,Cat BDP 提供卓越的可靠性、耐用性和功能,包括:• 用于储能设备充电和放电的智能控制。• 每单位 2 个故障电流能力 • 静态无功补偿器 • 全四象限输出功率工厂控制 • 获得专利的非线性下垂控制,可实现超快速响应 • 无缝模式转换 • 自动防孤岛 • 电网形成 • 电网跟踪 • 自主模式或远程控制模式 • 并联就绪 - 可以并联使用多个模块以将总输出增加到 100+MW 储能 • 先进的锂离子电池提供良好的能量密度、高放电/充电效率和高循环寿命。• 重型电池结构可在运输过程中提供隔振。应用 • 电网加固/电网稳定 • 发电机组瞬态辅助 • 黑启动能力/装置功率 • 虚拟旋转储备
热管理对于锂离子电池的安全性、性能和耐用性至关重要,锂离子电池在消费电子产品、电动汽车 (EV)、航空航天和电网级储能中无处不在。随着电动汽车在全球范围内的大规模普及,锂离子电池越来越多地在低温、高温和快速充电等极端条件下使用。此外,由电池热失控引起的电动汽车起火已成为电动汽车广泛普及的主要障碍。这些极端条件对热管理提出了巨大挑战,需要采取非常规策略。电池的热、电化学、材料和结构特性之间的相互作用进一步增加了挑战,但也为开发创新的热管理策略提供了机会。本综述分析了极端条件下热管理面临的挑战。然后,重点介绍了两个方向的进展。一个方向是基于传热原理改进电池热管理系统,该系统通常位于锂离子电池的外部。另一个方向是设计新型电池结构,这些结构通常位于锂离子电池内部,例如带有嵌入式传感器和执行器的智能电池。后一种方法可以大大简化甚至消除极端条件下对电池热管理的需求。建议进行整合这两种方法的新研究。[DOI:10.1115/1.4056823]