1.1.2 本 AC 的目的。本 AC 主要用于符合《联邦法规》第 14 章 14 CFR 91.225 和 § 91.227 的飞机要求的安装。适航合规性将根据适用的预期功能规则(例如 §§ 23.1301、25.1301、27.1301 或 29.1301)进行评估,并认识到预期功能是满足 §§ 91.225 和 91.227 中的设备要求。您的 ADS-B OUT 系统可能会获得具有不同预期功能的适航批准;但是,我们强烈反对这种类型的安装,除非它符合外国非雷达空域 ADS-B OUT 的标准(例如,经批准的合规方法 (AMC) 20-24、通过 1090 MHZ 扩展电波使用 ADS-B 监视 (ADS-B-NRA) 应用程序在非雷达区域增强型 ATS 的认证注意事项)。使用此 AC 安装不符合 §§ 91.225 和 91.227 的 ADS-B 系统的申请人必须遵守此 AC 的所有方面或根据情况向联邦航空管理局 (FAA) 提出替代方法。
实现单模式发射的最简单方法是利用一个小的氧化孔(<3μm)。但是,由于串联电阻的增加,这强烈限制了输出功率,并使热滚动局部恶化。如[6]中所述,已经提出了几种设计,以提高单模内部的产量功率,例如基于表面浮雕的圆形VCSEL [15],[16]或圆形设备,其Epi架构具有氧化物和静电波之间的特定对齐方式,通过修改几乎没有P-dbriairs [6] [6]。两种解决方案都呈现一个模式功率,左右为4÷6 mW。但是,对于使用VCSEL阵列或大型主动区域设备可以实现的功率水平仍然很低,具有多模式发射,因此较低的光谱纯度。例如,具有尺寸为40×10μm2的矩形活性区域的VCSEL报告了数十个MW的多模式功率[17],[18]。
摘要 - 通过捕获大脑活动的消费者可穿戴设备的出现,已提出使用脑电波来验证用户身份的使用,以作为密码的方便替代品。最近在脑生物识别方面的工作显示出可行的性能,但考虑实用性的适用性不足。我们提出了一种新的解决方案Brainnet,该解决方案训练一个暹罗网络,以测量两个脑电图(EEG)输入的相似性,并使用时间锁定的大脑反应而不是连续的心理活动来提高准确性。这种方法消除了对脑电波识别系统进行检验的需求,这是当前解决方案中的常见陷阱,促进了实际部署。此外,Brainnet在验证模式下达到0.14%的误差率(EER),在识别模式下达到0.34%,即使在看不见的攻击者场景下进行评估时,也表现出色的状态。索引术语 - 脑生物识别技术,用户身份验证,计算机安全,脑电图(EEG)
''是用于量子计算的功能编程语言。Proto-Quipper是一种旨在为震颤提供正式基础的语言家族。在本文中,我们用一种称为动态提升的构造扩展了原始Quipper-M,该构造中存在于震颤中。凭借作为电路描述语言,原始电波器有两个单独的运行时间:电路生成时间和电路执行时间。在电路生成时间已知的值称为参数,在电路执行时间已知的值称为状态。动态提升是一个使状态(例如测量结果)提升到参数的操作,它可以在其中影响电路的下一个部分的生成。因此,动态提升使原始程序可以交流经典和量子计算。我们描述了我们称为原始Quipper-dyn语言的语法。其类型系统使用模式系统来跟踪动态提升的使用。我们还提供了一种基于丰富类别理论的动态提升的操作语义以及一种抽象的分类语义。我们证明类型系统和操作语义相对于我们的分类语义都是合理的。最后,我们提供了一些原始Quipper-Dyn程序的示例,这些程序可以利用动态提升。
摘要 基于四颗磁层多尺度航天器穿越地球弓形激波期间的高时间分辨率数据,评估了无碰撞等离子体激波前沿等离子体熵的演变和等离子体能量重新分布的过程。将离子分布函数分离为激波附近具有不同特征行为的群体:上游核心群体、反射离子、回旋离子、激波附近捕获的离子和下游核心群体。分别确定了这些群体的离子和电子矩值(密度、体积速度和温度)。结果表明,随着静电势的增加,太阳风核心群体体积速度主要在斜坡处减慢,而不是像假设的那样在足部区域减慢。反射离子群体决定了足部区域的性质,因此足部区域的质子温度峰值是不同离子群体相对运动的结果,而不是任何离子群体热速度的实际增加。评估的离子熵表明,激波的整个过程中出现了显著的增加:离子熵的增强发生在激波前沿的脚部和斜坡处,反射离子与上游太阳风离子一起出现,各向异性不断增加,产生了离子尺度静电波的爆发。激波的电子熵没有显示出显著的变化:电子加热几乎是绝热的。统一天文学词库概念:太阳风 ( 1534 ) ;行星弓形激波 ( 1246 )
高性能事件检测系统是进行某些预测研究所需的全部。在这里,我们介绍 AURA:一种使用未标记的实时数据训练的自适应预测模型,使用内部生成的近似标签进行实时训练。通过利用时间序列数据的相关性质,一对检测和预测模型耦合在一起,使得检测模型自动生成标签,然后用于训练预测模型。AURA 依赖于几个简单的原则和假设:(i) 目标应用中事件预测/预报模型的性能仍然低于事件检测模型的性能,(ii) 检测到的事件被视为弱标签,并被认为足够可靠,可用于在线训练预测模型,以及 (iii) 系统性能和/或系统响应反馈特性可以针对被测对象进行调整。例如,在医疗患者监测中,这可以实现个性化预测模型。癫痫发作预测被认为是 AURA 的理想测试案例,因为发作前脑电波因患者而异,根据患者情况定制模型可以显著提高预测性能。AURA 用于为 10 名患者生成个人预测模型,结果显示灵敏度平均相对提高 14.30%,误报率降低 19.61%。本文提出了一个概念验证,证明了在时间序列神经生理数据流上进行在线迁移学习的可行性,为低功耗神经形态神经调节系统铺平了道路。
UDC 681.3 (038) BBK 73 + 81.2 English-4 K55 Kochergin V.I. 计算机信息技术和无线电电子学大型英俄解释性科学技术词典:共 9 卷(第 1 卷 - 460 页,T. 2 - 436 羽, T.3 - 511 羽, T.4 - 407 羽、T.5 - 398 羽、T.6 - 488 羽、T.7 - 587 羽、T.8 - 399 羽、T.9 - 456 羽)。托木斯克:汤姆出版社。大学,2016 ISBN 978-5-7511-2332-1 本书是作者五卷本词典(Kochergin V.I. 计算机信息技术和无线电电子学大型英俄解释性科学技术词典)的重要扩充。托木斯克:出版众议院卷。计算机和信息技术词典还包括无线电电子半导体技术——基于射频电磁振荡和电波(雷达、卫星)来传输和转换信息的一系列科学技术领域的统称。通信、电视、电声等)。该词典不仅包含无线电电子学的现代术语,还包含已进入其历史的术语。该词典面向广泛的用户,从大学生到参与翻译所介绍主题的文本的专业人士。 UDC 681.3 (038) BBK 73 + 81.2 English-4 ISBN 978-5-7511-2332-1 © V.I.科切尔金
通过卫星激发的电磁波和通过轨道驱动的波(Soimow)的测量值(SOIMOW)的测量来检测到一种称为空间对象识别的技术。具有等离子波的空间对象的接近度测量可能允许在传统上通过光学望远镜和雷达范围传感器实现的正常检测阈值以下的空间碎片。soimow使用原位等离子体接收器来识别轨道结合过程中的空间对象。卫星和其他空间对象穿过200到1000公里的高度之间的近地层,由电子收集和阳光下的照片发射引起电荷。这些超音速,带电的物体激发了各种血浆波。SOIMOW技术表明,可以观察到来自已知物体的电磁等离子体波到数十公里的范围,从而提供有关存在空间对象的信息。Soimow概念已用蜂群卫星上的无线电接收器仪器(RRI)证明。RRI数据的幅度,光谱和极化变化与电磁,压缩alfvén波的一致,这些电磁波是由跨磁场线传播的带电空间对象发射的。此外,可以通过较低的杂化漂移或离子声波不稳定性产生空间对象处的静电波。正在研究原位电场探头和对散射卫星波的远程检测,以确定轨道物体的位置。
什么是脑电图?AEEG或CEEG是用于监测婴儿大脑活动的测试。它可以监视大脑的电波,类似于心电图对心脏的电节律的监视方式。为什么有些婴儿有AEEG/CEEG?如果医生担心婴儿有脑损伤的危险,则可能会有一项或两项检查。AEEG如何完成?护士或医生将在宝宝的头上放置粘铅(也称为电极)。然后将电极连接到床头AEEG机器,在该机器上可以在AEEG显示器上看到脑波。如果AEEG显示出有关的波形模式(例如,波比预期的比较平坦或更清晰),则将完成CEEG。CEEG如何完成?CEEG专家将使用特殊胶水将许多电极放在宝宝的头上。然后将电极连接到床边CEEG机器,该机器比AEEG大得多。CEEG机器还具有摄像机,因此可以同时记录婴儿的脑波和动作。如果存在异常的脑波,新生儿学家和神经科医生(脑医生)可以看到同时发生的异常运动。CEEG测试需要多长时间?至少24小时,多次,更长的时间。测试(AEEG或CEEG)痛苦吗?不,电极不会受伤。测试期间我可以抱着我的孩子吗?是的,只要您的宝宝的医疗状况稳定。AEEG和/或CEEG完成后会发生什么?电极和宝宝头上的任何胶水都被移除。医疗团队(新生儿学家,神经科医生和小学护士)将与您坐下来讨论照顾婴儿的结果和下一步。
摘要基于从四个磁层多杆太空上的高空分辨率数据评估血浆熵的演变和在无碰撞等离子体冲击前部的血浆能量重新分布的过程。离子分布函数已被分离为在冲击附近具有不同特征行为的种群:上游核心群体,反射离子,回旋离子,被困在冲击附近的离子和下游核心种群。已分别确定了这些种群的离子和电子力矩(密度,大量速度和温度)的值。表明,太阳风芯种群散装速度主要在坡道中放慢速度,而静电电势的增加,但在脚部区域不如预期的那样。反射的离子种群决定了脚区域的性质,因此脚部区域的质子温度峰是不同离子种群相对运动的效果,而不是任何离子种群的热速度的实际增加。评估的离子熵显示在冲击中有显着增加:离子熵的增强发生在冲击阵线的脚下和坡道上,在该斜坡上,反射的离子除了上游太阳能离子外,各向异性还在生长,以产生离子电量电波的爆发。跨冲击的电子的熵并没有显示出显着的变化:电子加热几乎是绝热的。统一的天文学词库概念:太阳风(1534);行星弓冲击(1246)