参考年份 电源 (V) 功耗 (µW) –3 dB 带宽 (MHz) 非线性 (%) THD (%) 技术 (μm) [1] 2013 1.2 75 59.7 0.9 N/A 0.18 [8] 2020 1.8 61.9 736 0.93 0.98 (20 µA, 1 MHz) 0.18 [11] 2009 3.3 340 41.8 1.1 0.97 (20 µA, 1 MHz) 0.35 [15] 2009 3.3 240 44.9 1.15 0.76 (20 µA, 1 MHz) 0.35 [23] 2016 2.8 0.521 137 1.12 1.45 (20 µA, 1 MHz) 0.35 [24] 2019 0.8 92 623 0.69 0.97(20 µA,1 MHz) 0.18 [25] 2017 1 0.508 33.52 2.9 2.05(0.1 µA,100 kHz) 0.18 [26] 2018 0.8 770 34.1 2 0.67(50 nA,0.1 MHz) 0.18 [27] 2021 ± 1 700 260 N/A 0.49(±150 µA,1 MHz) 0.5 [28] 2014 1.5 700 230 1.8 N/A 0.18 [29] 2012 ± 0.75 2.3 2.8 0.3 0.7 (20 nA, 1 kHz) 0.35 [30] 2017 1.8 144 62 1.5 1 (10 µA, 10 kHz) 0.18 [31] 2005 2 5.5 0.2 5 0.9 (150 nA, 0.2 MHz) 0.35 [32] 2000 5 N/AN/AN/A 2(50 µA, 10 kHz) 2.4 [33] 2001 3.3 600 3 N/A 1.5 (20 µA, 10 kHz) 2.4 [34] 2014 1 90 N/AN/AN/A 0.18 本研究 ----- 0.75 105 850 0.85 0.42(20微安,1兆赫) 0.18
摘要:在本文中,使用两个新的第二代电流输送机(CCIIS)的新变体(即电流输送机cascaded Transcadudcative Amplifier(CCCTA)和Extraf-X电流传送器转换器(Expla)Contractor Transcta(Excct and-Excct),使用了两种新变体,可以实现改良的单输入 - 型 - 型号(SIMO)电流模式生物模式的阴影普遍过滤器(SUF)。由CCCTA组成的非阴影通用滤波器(NSUF)的低通和传递输出通过使用一个Ex-CCCTA的两个放大器的反馈路径来实现所提出的SUF。它是无电的,仅利用两个接地电容器。同时获得了SUF的所有五个标准响应,例如低通(LP),高通(HP),带通(BP),带否(BR)和所有Pass(AP)。SUF比NSUF的主要优点是cccta和ex-cccta的偏置电流的极频率(ωO)和质量因子(Q o)的正交调整。由于适当的输入和输出阻抗,它适用于完全覆盖性。此外,它简化了集成的电路实现,因为所有电容器都是接地的,不需要电阻。它没有任何组件匹配的约束,并且消耗了4.1MW的功率。使用Cadence Virtuoso在TSMC技术中验证了理论结果。
摘要 提出了一种用于峰值电流模式 (PCM) 控制的降压型 DC-DC 转换器的精确可编程平均电感电流限制方法。利用 Gm-C 滤波器检测与电感串联的电流检测电阻上的压降。然后,通过电压-电流 (V2I) 转换器将压降转换为电流信号。转换后的电流信号叠加在误差放大器的输出上,以调节峰值电感电流。降压转换器采用 0.18 µ m BCD 工艺设计。对于 50 m Ω /25 m Ω 的检测电阻,电流限制值分别设计为 1 A/2 A。当等效负载电阻从 10 Ω 变为 2.5 Ω/1.67 Ω 时,仿真结果表明,对于 50 m Ω /25 m Ω 的检测电阻,平均电感电流分别从 500 mA 增加到 0.9 A/1.8 A。关键词:电流限制,平均电感电流反馈,Gm-C滤波器分类:集成电路(模拟)
摘要:在本文中,提出了带有快速安全充电的锂离子电池充电器接口(BCI)电路。在充电期间,由于异步控制信号引起的电流尖峰和温度是极大地影响电池性能和寿命的因素。该电路具有以下特征:防止电流尖峰,还包含了永久的电池温度监测块。BCI使用双电流源,并在1.5 a的大电流模式下生成常数电流,进一步减少了充电时间。使用TSMC 180 nm技术在Cadence Virtuoso中设计和模拟了所提出的BCI。控制信号的仿真结果表明,所提出的体系结构能够消除当前的漂移并将电池温度保持在正常工作范围内。关键字:锂离子电池充电器接口,快速和安全的充电,双电流源,trick流,电流模式,大电流模式,恒定电压模式。
本文提出并评估了用于近阈值计算 (NTC) 的新型电路拓扑。采用 130 nm 技术开发了三种独立的动态差分信号逻辑 (DDSL) 系列,工作电压为 400 mV 和 450 mV。所提出的逻辑系列优于为近阈值实现的当代 CMOS 和电流模式逻辑 (CML) 电路。DDSL 系列被描述为动态电流模式逻辑 (DCML)、锁存 DCML (LDCML) 和动态反馈电流模式逻辑 (DFCML)。通过实现布尔函数和 4 × 4 位阵列乘法器进行仿真和分析。在 450 mV 电源电压下,4 × 4 DFCML 乘法器的总功率降低至 0.95 × 和 0.009 × ,而与 CMOS 和 CML 乘法器相比,最大工作频率分别提高了 1.4 × 和 1.12 ×。与 CMOS 乘法器相比,DCML 乘法器的功耗为 1.48 倍,同时 f max 提高了 1.65 倍。使用开发的动态逻辑系列实现的四个反相器链的能量延迟积 (EDP) 分别为 CMOS 和 CML 实现的 0.27 倍和 0.016 倍。同样使用反相器链评估的 DFCML 和 LDCML 的平均噪声裕度至少比 CMOS 大 2.5 倍。
一些设计挑战[18,19]。有源电感使用晶体管构建,因此电压摆幅低于无源电感,因为晶体管需要较大的电压余量。并且晶体管的非线性特性使有源电感的电感阻抗随偏置点而变化[20]。当有源电感工作在相对较大的电压摆幅下时,输出阻抗的变化很大。为了增加输出电压摆幅,做了一些其他的工作[21-23]。它们克服了阈值电压的限制,因此所需的电压余量降低了,但是晶体管非线性的影响仍然存在。为了使阻抗变化可接受,它们仅对输出电压摆幅提供有限的增加。
图 3 收集了两个测试离子源的测量电流 𝐼 sc 和 𝐼 ac 与质量流速 𝑚̇ s 的关系。在隼鸟 2 号源中,屏栅电流对两种推进剂都显示出一个最大值。氪的最大电流 (216 mA) 大于氙气 (171 mA),但达到的最大电流略高,分别为 0.24 (3.8) vs. 0.22 mg/s (2.2 sccm)。超过上述峰值后,𝐼 sc 从“高电流模式”(HCM) 降至低效的“低电流模式”(LCM),如 15–17 中所述,同时反射的微波功率增加。对于氙气,这种转变似乎更为突然。另一方面,氙气和氪气的𝐼ac最小值分别为0.18(1.8)-0.19毫克/秒(1.9 sccm)和0.16(2.5)-0.20毫克/秒(3.3 sccm)。
图 5 左侧显示了 HR1211 的电流模式部分,右侧显示了通用电源适配器中的组合芯片。该部件实现了具有多次可编程 (MTP) 存储器和非易失性存储器 (NVM) 的数字核心。HR1211 提供标准通用异步接收器发送器 (UART),允许与专用图形用户界面 (GUI) 进行通信。使用此功能,电源设计人员可以选择控制 PFC 和 LLC 级所需的参数。HR1211 中的 PFC 控制器采用获得专利的数字平均电流控制方案来实现混合 CCM/DCM 操作。