我们提出了一种高度可扩展的方法来计算驱动导体中的电荷转移统计数据。该框架可应用于非零温度、强耦合到终端以及存在非周期性光物质相互作用的情况,远离平衡。该方法将所谓的介观引线形式与完整计数统计相结合。它产生了一个广义量子主方程,该方程决定了电流波动的动态和电荷交换概率分布函数的高阶矩。对于一般的时间相关二次汉密尔顿量,我们提供了闭式表达式,用于计算系统、储层或系统-储层相互作用参数的非微扰状态下的噪声。通过访问电流及其噪声的完整动态,该方法使我们能够计算非平衡配置中电荷转移随时间的变化。动态表明,在驱动系统中,平均噪声应在操作上谨慎定义所涵盖的时间段。
5 实用直流 SQUID:配置和性能 171 5.1 简介 172 5.2 直流 SQUID 基本设计 175 5.2.1 非耦合 SQUID 175 5.2.2 耦合 SQUID 177 5.3 磁强计 186 5.3.1 概述 186 5.3.2 用于高空间分辨率的磁强计 187 5.3.3 用于高场分辨率的磁强计 188 5.4 梯度计 193 5.4.1 概述 193 5.4.2 薄膜平面梯度计 195 5.4.3 线绕轴向梯度计 198 5.5 1/ f 噪声和在环境场中的操作 200 5.5.1 关于 1/ f 噪声的一般说明 200 5.5.2 临界电流波动 200 5.5.3 热激活涡旋运动 201 5.5.4 涡旋的产生 203 5.5.5 降低涡旋运动产生的 1/ f 噪声 205 5.5.5.1 概述 205 5.5.5.2 涡旋钉扎 205 5.5.5.3 窄线宽器件结构 206 5.5.5.4 通量坝 207 5.6 其他性能下降效应 208 5.6.1 磁滞 208 5.6.2 射频干扰 209 5.6.3 温度波动和漂移 210
印度专利局已授予印多尔理工学院“PN 调谐差分 8T 静态随机存取存储器 (SRAM) 单元”专利。本发明一般涉及集成电路,更具体地说涉及超低功耗 SRAM。为了降低存储器单元阵列的功耗,电源电压缩放是最优选的方式。电源电压缩放使操作能够在亚阈值范围内进行,其中电路的功耗最小。这是通过选择低于所用金属氧化物半导体场效应晶体管 (MOSFET) 器件的阈值电压的电源电压来实现的。通过 VLSI 设计进行电源电压缩放会受到诸如静态噪声容限 (SNM) 的明显损失、电流波动、限制可能连接到单个位线的单元数量等限制。本发明减少了读取干扰并提高了 SRAM 单元的写入能力,从而在超低功耗操作中更有效地操作 SRAM 单元。本发明还增强了 SRAM 单元在亚阈值区域内对工艺电压温度变化的免疫力。这是通过切断反馈并限制通过真实存储节点到地的电流来实现的,从而提高了 8T SRAM 单元的写入能力和写入速度,允许设置公共写入脉冲宽度,从而提高写入速度。读取操作期间对真实存储节点没有直接干扰,从而降低了芯片间或芯片内变化导致的故障概率。这种新型 SRAM 单元将使设计人员能够构建强大的内存阵列。
摘要:随着时间的推移,对微电网及其在建筑、工业和非常特殊的应用中的应用的需求不断增加。这些微电网中的大多数都依赖于可再生能源,这带来了间歇性能源生产的问题。为了保持电网的平衡,通常使用存储设备。超级电容器 (SC) 因其高功率密度和快速充电/放电能力而成为解决可再生能源间歇性能源生产问题的潜在解决方案之一。换句话说,与传统锂电池相比,SC 可以相当快地充电和放电。这种用途使其对于优化基于分散能源发电的光伏系统运行非常有用。在本文中,作者提出了住宅微电网中的超级电容器快速老化控制,包括基于电动汽车充电站的光伏燃料电池系统。超级电容器快速老化控制概念侧重于通过平滑系统中的功率波动将 SC 的电气参数保持在最佳操作点附近。所用的超级电容器模型主要基于间歇电流波形以及可变温度条件。它使我们能够根据温度和直流电流波动的影响来描述超级电容器参数的退化。为了将超级电容器的电气参数保持在最佳工作点附近,作者提出了一种新的控制方法,该方法通过根据最佳工作点跟踪调整超级电容器的电流控制,将超级电容器的电阻保持在最小水平,将电容保持在最大水平。结果验证了该方法的有效性,这很重要,因为控制电容的快速退化可以优化超级电容器系统的寿命。未来的研究可能会探索大型微电网的可扩展性以及与各种可再生能源系统的集成。