全面研究了 O 2 等离子体处理对 AlGaN/GaN 高电子迁移率晶体管 (HEMT) 动态性能的影响。漏极电流瞬态谱表明,经过 O 2 等离子体处理的 HEMT 的电流衰减过程大大减慢并得到缓解。在负栅极偏压应力下,通过 O 2 等离子体处理实现了 10.7 % 的电流崩塌和 0.16 V 的微小阈值电压漂移。此外,HEMT 的电流崩塌比与应力/恢复时间的关系表明,经过 O 2 等离子体处理的 HEMT 在各种开关条件下均具有优异的性能。特别是在高频开关事件中,电流崩塌比从约 50 % 降低到 0.2 %。最后,通过电容-频率测量证明了经过 O 2 等离子体处理的 AlGaN/金属界面的质量,界面陷阱密度 D 估计为 1.39 × 10 12 cm − 2 eV − 1 。这些结果表明,采用 O 2 等离子体处理的 GaN HEMT 是一种在功率开关应用中很有前途的技术。
电极中的界面不稳定性控制着锂离子电池的性能和寿命。虽然阳极上固体电解质界面(SEI)的形成引起了很多关注,但仍然缺乏对阴极上阴极 - 电解质界面(CEI)形成的阳极界面。为了填补这一空白,我们通过利用Operando数字图像相关性,阻抗光谱和冷冻X射线光电学光谱镜来报告有关磷酸锂,LifePo 4阴极的动态变形。Lifepo 4阴极在LIPF 6,LICLO 4或LITFSI中循环。在第一个周期之后,锂离子插入导致电化学菌株与(DIS)递送的状态之间几乎线性相关,而与电解质化学无关。但是,在LIPF 6中的第一个电荷 - 含有电解质的第一个电荷期间,在阳极电流上升开始时有明显的不可逆的正应变演化,并且在4.0V左右的电流衰减。阻抗研究表明,在相同的潜在窗口中表面阻力的增加,表明在阴极上形成了CEI层。CEI层的化学性质的特征是X射线光电子光谱。LIF,在第一个充电期间,电压以高于4.0 V的电压出现。我们的方法为阴极电极上CEI层的形成机理提供了新的见解,这对于为高性能电池开发可靠的阴极和电解质化学物质至关重要。