摘要:在航天器中,负责管理从太阳能电池阵列到电源总线的电力传输的太阳能电池阵列功率调节器的典型配置与用于地面应用的相应设备有很大不同。本文对最流行的方法进行了全面分析,即顺序开关分流调节和具有最大功率点跟踪的并联输入脉冲宽度调制转换器。它们的性能与典型的低地球轨道任务进行了比较,突出了各自的优缺点。本文还介绍了一种新颖的太阳能电池阵列管理技术,即顺序最大功率跟踪,并证明了它能够促进能量收集,尤其是在太阳能电池阵列不匹配的情况下。它还可以使用相当简单的控制硬件实现最高水平的可靠性。它的运行通过 Matlab-Simulink 模型和实验面包板进行了验证。
某些模块用于电场侧设备的现场侧功率。电源越过SA电源总线。一些模块从总线绘制电流,然后将其余电流传递给下一个模块。其他模块不会从总线绘制电流,而是将电流传递给下一个模块。您使用5069-FPD场电位分销商在系统中建立新的SA电源总线。重要:•如果系统包含DC类型模块和交流类型模块,则必须使用现场电位分配器将它们安装在单独的SA Power Bus上。•您不能直接安装紧凑型Guardlogix 5380控制器旁边的AC类型模块。您必须首先安装字段电位分销商。
• 高容量油系统 • 10,000 小时无刷伺服器 • 带有冗余电源总线航空电子设备的双交流发电机电力系统 • 下一代 INS/GPS • 带有容错液压调速器的改进型螺旋桨 • 带有 LED 导航灯和一体式 UHF/VHF 天线的混合翼梢小翼 • 自动识别系统 (AIS) • 带有 AES 256 加密的数字远程视频发射器 • 空对空视频传输可实现有人无人协同 (MUM-T)
图2显示了Ti可堆叠的电池管理单元参考设计,该单元参考设计通过BQ79616电池监视器实现±3-MV电池电压误差从–20°C到65°C。对于住宅系统,另一种选择是BQ76972电池监视器,它可以达到±5-MV电池电压从–40°C到85°C。多路复用器开关扩展温度测量通道,以确保监视每个电池电池和电源总线连接器温度。可堆叠的电池参考设计保留了额外的温度通道,以进行多路复用器开关的诊断检查。
最大速度下的角动量 Nms 4 至 12 最大速度下的输出扭矩 Nm .055 最大扭矩和速度下的峰值功率 瓦 <80 最大速度下的功率保持 瓦 <15 电源总线电压 伏 14 至 23 轮毂速度 rpm 6000 质量 kg 3.6 至 5.0 外径 mm 267 高度 mm 120 集成电子元件 是/否 是 寿命要求 年 >10 辐射硬度 krad(Si) 300 零件筛选等级 S 轴承尺寸 R4 工作温度范围 摄氏度-低度 -15 摄氏度-高度 +60 振动 Grms 19.8 电机类型 交流/直流 直流 接口 模拟/数字 模拟 静态不平衡 gm-cm <0.2* 动态不平衡 gm-cm 2 <3.1*
强烈建议为无线电和 vario 系统使用单独的电源电路。这样做的原因是 varios 消耗 100-200mA 电流,而 TRANSMIT 上的典型无线电消耗 2 AMPS 电流。如果无线电和 varios 共享相同的电源总线,则电路中的任何电阻都会乘以无线电发射时的 2 AMP 电流消耗,而不是 vario 电路的 200mA,从而导致更大的电压降。这会导致您的 vario 在无线电传输期间无法正常工作,特别是在电池电量低的情况下。当然,为获得最佳无线电性能,最好将电源线中的电阻降至最低。不必要电阻的来源包括开关接触不良、保险丝不良、保险丝座不良、电池连接器不良、线规太小以及焊接不良。我们建议使用 18 号或更大的航空电线、电子工业类型的开关(不是汽车开关,因为这些开关有时具有未镀层的黄铜触点,会氧化)和 CANNON 类型的电池锁存连接器。 (4 针 - 针 1 正极,针 4 接地。3 针 - 针 1 正极,针 3 接地。)
随着当今电子产品的广泛应用,单粒子效应 (SEE) 已成为一个重大问题,不仅对于航空航天和军事等关键应用,而且对于汽车行业和医疗器械也是如此,因为可靠性始终是重中之重。这种担忧在包含电磁 (EM) 和电离辐射的环境中尤为明显,这些辐射与物质的相互作用可能会改变存储元件的状态,从而降低系统可靠性。技术规模的缩小增加了带电粒子撞击或由于传导 EM 干扰导致的电源总线波动影响多个单元的可能性;因此,导致多单元翻转 (MCU)。单纠错 - 双纠错 (SEC-DED) 代码是为存储系统提供可靠性的最常用技术之一。但是,SEC-DED 代码的标准实现不再适合提供信息可靠性,因为它们无法令人满意地处理每个编码字的大量位翻转,即 MCU 发生。在此背景下,本文提出了扩展矩阵区域选择代码 (eMRSC),这是 MRSC 的改进版本,它将之前发布的原始 16 位代码扩展为 32 个数据位的新 MRSC 版本。此外,还提出了一种新的数据矩阵区域方案,以减少生成的冗余位数。将提出的代码与众所周知的代码进行了比较,在所有实验中都表现出色。综合分析表明,提出的代码不仅可靠,而且实施成本低(即面积、编码/解码延迟和功率开销低)。