1 引言 量子最优控制理论 (QOCT) 是指一套设计和实现外部电磁场形状的方法,这些电磁场以最佳方式操纵原子或分子尺度上的量子动力学过程 [246]。它建立在更通用的控制理论的基础上,控制理论是在应用数学、工程学和物理学交叉领域发展起来的,涉及操纵动态过程以实现特定任务。主要目标是使所研究的动态系统以最优方式运行并达到其物理极限,同时满足现有设备施加的约束。量子过程也不例外,但控制理论的某些方面必须进行调整,以考虑到量子世界的特殊性。过去几年中,QOCT 已成为新兴量子技术不可或缺的一部分 [6],证明了控制将科学知识转化为技术 [246]:如果叠加原理是量子力学的核心特征,那么量子控制就是叠加原理在起作用。量子技术需要相对隔离良好、特性良好的量子系统。与化学反应动力学等使用 QOCT 的其他领域相比,这一特性使其成为 QOCT 的理想试验台。另一方面,QOCT 已经成熟到如今已可在实验中使用。QOCT 的下一个挑战是成为一种
阿尔茨海默病 (AD) 是全球最常见的神经退行性痴呆症。AD 是一种多因素疾病,会导致记忆力和功能逐渐下降,而毒性 β-淀粉样蛋白 (Aβ) 是 AD 病理学中的关键因素。2022 年,650 万美国人患有 AD,给美国造成了 3210 亿美元的损失。AD 治疗的标准护理包括乙酰胆碱酯酶抑制剂 (AchEI)、NMDA 受体拮抗剂和单克隆抗体 (mAb)。然而,这些方法要么:1) 无法改善认知,2) 无法改变疾病进展,3) 治疗靶点数量有限,4) 容易引起严重的副作用(mAb 导致脑肿胀、微出血,AchEI 导致心动过缓和晕厥),5) 无法有效穿过血脑屏障,6) 缺乏对衰老过程对疾病影响的了解。
摘要:聚合物废物目前是全球一个巨大而充满挑战的问题。废物轮胎是聚合物废物的重要来源。因此,从废物轮胎中回收功能填充物来为高级应用开发复合材料是非常需要的。本综述的主要主题涉及使用回收轮胎作为填充物的材料开发聚苯乙烯(PS)复合材料的概述;废轮胎轮胎回收在地面轮胎橡胶,碳黑色和纺织纤维方面;填充剂的表面处理以优化各种复合特性;以及PS复合材料的机械性,火力阻滞,声学和电磁场(EMI)屏蔽性能。从聚苯乙烯和再生废物轮胎中开发复合材料,为实现碳排放目标和闭环塑料回收的减少提供了新的途径,这对循环经济学和环保社会的发展至关重要。
由于大量射频 (RF) 和微波 (MW) 应用,高频电路设计领域正受到工业界的广泛关注。改进的半导体器件使得高速数字和模拟系统得以广泛应用,如无线通信、全球定位、雷达以及相关的电气和计算机工程学科。这种兴趣转化为对具有全面高频电路设计原理知识的工程师的强烈需求。然而,对于学生、专业工程师甚至教授这门课程的教师来说,存在一个普遍的问题。现有的大多数教科书似乎针对两类不同的受众:A) 具有广泛理论背景的高级研究生水平人群,和 B) 对数学和物理严谨性不感兴趣的技术人员。因此,RF 电路设计以两种截然不同的形式呈现。对于高级学生来说,进入该领域通常是通过电磁场方法,而对于技术人员来说,嵌入在基尔霍夫定律中的基本电路方面是首选方法。这两种方法都很难充分解决高频设计原理的理论和实际问题。基本电路方法缺乏或只是表面上涵盖了电流和电压的波动性质,而电流和电压的反射和传输特性是射频电路行为不可或缺的要素。电磁场方法当然涵盖了波导和传输线方面,但远远没有触及设计高频放大器、振荡器和混频器电路的重要方面。这本教科书的目标是以一种方式开发射频电路设计方面,以便在不采用电磁场方法的情况下明确传输线原理的必要性。因此,除了大多数学院和大学提供的场和波一年级本科物理课程外,不需要任何电磁背景。具备基本电路理论知识和/或微电子学知识的学生可以使用本书,并涵盖从传输和微带线的基本原理到各种高频电路设计程序的整个范围。冗长的数学推导要么被放到附录中,要么放在与正文分开的例子中。这样可以省略一些枯燥的理论细节,从而将重点放在主要概念上。为了接受提供高水平设计体验的挑战,我们提供了许多例子,这些例子详细讨论了各种设计方法的哲学和复杂性,在许多情况下,这些例子长达数页。
背景。中子星被超强电磁场有效加速的超相对论粒子所包围。这些粒子通过曲率、同步加速器和逆康普顿辐射大量发射高能光子。然而,到目前为止,还没有任何数值模拟能够处理这种极端情况,即非常高的洛伦兹因子和接近甚至超过量子临界极限 4.4 × 109T 的磁场强度。目的。本文旨在研究旋转磁偶极子中的粒子加速和辐射反应衰减,其实际场强为 105 T 至 1010 T,这是毫秒和年轻脉冲星以及磁星的典型场强。方法。为此,我们在简化的 Landau-Lifshitz 近似中实现了一个精确的分析粒子推动器,包括辐射反应,其中假设电磁场在一个时间步长积分期间在时间上恒定而在空间上均匀。使用速度 Verlet 方法执行位置更新。我们针对时间独立的背景电磁场(如交叉电场和磁场中的电漂移以及偶极子中的磁漂移和镜像运动)对我们的算法进行了广泛的测试。最后,我们将其应用于真实的中子星环境。结果。我们研究了粒子加速以及辐射反应对插入毫秒脉冲星、年轻脉冲星和磁星周围的电子、质子和铁核的影响,并与没有辐射反应的情况进行了比较。我们发现最大洛伦兹因子取决于粒子种类,但与中子星类型的影响很小。电子的能量高达 γ e ≈ 10 8 − 10 9 ,而质子的能量高达 γ p ≈ 10 5 − 10 6 ,铁的能量高达 γ ≈ 10 4 − 10 5 。虽然质子和铁不受辐射反应的影响,但电子的速度却急剧下降,使其最大洛伦兹因子降低了四个数量级。我们还发现,在几乎所有情况下,辐射反应极限轨迹都与简化的朗道-利夫希茨近似非常吻合。
EMI 能量的产生就好比人类生命的动能来源一样人类从胚胎成形开始,心脏便开始噗通噗通非常规律及周期的跳动,这样规律的跳动像帮浦一样,将血液输送到全身必要的细胞及器官,使生命得以维系.这心脏规律的跳动就成了生命的能量来源。 而电磁粒子规律的跳动,这样的振荡就如同心脏跳动一样产生了电磁场的能量
1.引言随着电子设备的使用越来越多,人体受到电磁场 (EMF) 的影响 [1,2];因此,随着科技进步和新设备的建造,人们对电磁波对生物系统的影响以及人类暴露于电磁波的情况进行了大量的研究[3-5]。然而,电磁场被称为一种无噪声污染[6];电磁辐射 (EMR) 广泛应用于现代技术和通信[7]。发射电磁波并暴露在人体面前的具体设备包括手机、电视、电脑、微波炉、蜂窝网络和基站收发器 (BTS) 塔 [8]。然而,人体细胞在 10 至 1000 Hz 的范围内相互通信,大多数手机在 270 至 1800 Hz 的范围内通信;因此,移动电磁波的范围与人类细胞间通讯系统重叠,从而对人体造成干扰。这些辐射按信号变化、辐射强度、辐射量等参数划分,辐射量最高的是手机[9]。例如,德国是住宅区受高频 GSM 电话塔影响的国家之一[10]。手机的频率为 900-1800MHz,脉冲为 218Hz。大多数欧洲和亚洲国家都使用这一频率范围,包括伊朗[11]。然而,手机波是安全的,因为它们是非电离的[12、13]。过度使用通讯设备会使许多人从幼年到老年都暴露在辐射中[14]。2. 准备论文电磁波对人体的负面影响
Xiaopu Wang的实验室博士:(要求1或要求2)要求1:(1-2名学生)a。 水凝胶或聚合物的基本知识; b。 热情从事与微型机器人有关的研究; c。精通英语; d。化学实验的经验是一个加分。 e。细胞培养的经验是一个加分。需求2:(1-2个学生)a。 电磁场的理论知识; b。 热情从事微型机器人有关的研究。 c。 Python中出色的编程技能(C/C ++语言是一个加分); d。精通英语; e。喜欢在计算机视觉或图像处理方面的经验;Xiaopu Wang的实验室博士:(要求1或要求2)要求1:(1-2名学生)a。水凝胶或聚合物的基本知识; b。热情从事与微型机器人有关的研究; c。精通英语; d。化学实验的经验是一个加分。 e。细胞培养的经验是一个加分。需求2:(1-2个学生)a。电磁场的理论知识; b。热情从事微型机器人有关的研究。c。 Python中出色的编程技能(C/C ++语言是一个加分); d。精通英语; e。喜欢在计算机视觉或图像处理方面的经验;
电介质中的电偏振,电位移电流;麦克斯韦电场方程的简介,电流密度的连续性方程,修改磁场卷曲的方程式以满足连续性方程。麦克斯韦在真空和非导电介质中的方程,电磁场中的能量,能量流和poynting载体,示例,波浪方程,真空中的波平方,平面电磁波及其横向性质,偏振,偏振,电磁波和磁场之间的电磁波和磁场之间的关系。