2023 年 8 月 4 日——与我的团队 CyberCougs 一起参加网络安全竞赛。作为...我计划利用这些知识加强军方的网络情报并使用新的...
清洁水对于饮用水、工业过程和水生生物至关重要。现有的水处理和基础设施是化学密集型的,基于近百年前的技术,无法满足现代大型分散社区的需求。下一代水处理可以通过利用纳米材料从电磁频谱中获取能量,从而实现电气化和太阳能技术,从而摆脱过时的技术。过去十年,纳米材料的设计、合成、特性和材料性能评估取得了巨大进步。要实现这些进步的好处,需要更加关注将纳米材料嵌入反应堆表面和内部,并应用外部能源。这将使基于纳米材料的工艺取代维多利亚时代的化学密集型水处理技术。
“光子学是研究光的科学。它是产生、控制和检测光波和光子(光的粒子)的技术。波和光子的特性可用于探索宇宙、治疗疾病甚至破案。科学家们已经研究光数百年了。彩虹的颜色只是整个光波范围(称为电磁波谱)的一小部分。光子学探索更广泛的波长,从伽马射线到无线电,包括X射线、紫外线和红外光。” 这个简洁的定义来自2015年国际光年(IYL)的网站。正如IYL定义所示,我们探索和理解光的概念确实在整个电磁波谱中很常见。然而,很容易理解的是,该光谱的波长范围从无线电波的数百米到X射线频率的亚纳米,这意味着该共同集合内的不同特征将在理解和应用特定光谱部分方面或多或少地占据主导地位。从“电子学”到“光子学”的转变反映了这种逐渐的转变,如图 1.1 所示。
简要介绍一下电磁波谱 (EMS),有助于解释电子战系统在现代战争中的作用。毫不奇怪,从手机到简单的电视遥控器,我们日常生活中的许多设备都使用 EMS。什么是电磁波谱 1 ?基本上,EMS 可以定义为在特定频率范围和波长下以光速传播的电磁波。EMS 的频率和波长的全部范围如下图 1 所示。2 EMS 频率和波长部分的顶部属于伽马射线和 X 射线,由于其高能光子和非常小的波长(λ=10-10 厘米)的性质,它们常用于医学领域(医学成像)和核物理。我们在 X 射线之后立即看到 EMS 的紫外线和红外光部分。这种 EMS 大部分对人眼来说是看不见的,但只有在这个频谱的一小部分中,电磁波才能被人类和大多数动物看到。红外摄像机(用于检测物体的热图像)也适用于电磁频谱的这一部分。电磁频谱的 1-300 GHz 频率(100 米-0.5 毫米波长)频谱主要由各种雷达系统使用,这些雷达系统主要用于军事应用、气象观测和导航辅助目的。电磁频谱范围的底部主要用于无线电通信和电视
低空遥感用 RPAS 技术和增强成像用微型传感器的蓬勃发展,推动了海洋生态应用的增加。然而,可见电磁波谱中传感器的 RPAS 的普遍性可能会限制沿温带潮间带岩礁的生物海洋栖息地的精细测绘、监测和识别应用。在这里,我们使用低成本 RPAS 结合多光谱传感器 (MicaSense® RedEdge™) 和基于对象的图像分析 (OBIA) 工作流程,在新西兰奥克兰怀特玛塔港制作生物牡蛎礁的超高分辨率地图。结果表明,可见电磁波谱以外的光谱带逐渐增强了图像上的特征检测,并增加了在异质海洋生态系统中描绘目标特征的潜力。使用基于规则的分类技术提取目标特征,基于分割后的光谱特征,总体准确率为 83.9%,kappa 系数为 69.8%。使用附加光谱带可提高牡蛎礁栖息地测绘的光谱分辨率。高空间尺度监测和测绘浑浊的潮间带岩礁带来了独特的挑战,但这些挑战可以通过在理想的气象和海洋条件下使用 RPAS 进行目标飞行来缓解。
用于低空遥感的 RPAS 技术和用于增强成像的微型传感器的蓬勃发展,导致了海洋生态应用的增加。然而,带有可见电磁波谱传感器的 RPAS 的普遍性可能会限制沿温带潮间带岩礁的生物海洋栖息地的精细测绘、监测和识别应用。在这里,我们使用低成本的 RPAS 结合多光谱传感器 (MicaSense® RedEdge™) 和基于对象的图像分析 (OBIA) 工作流程,在新西兰奥克兰怀特玛塔港制作了生物牡蛎礁的超高分辨率地图。结果表明,具有可见电磁波谱以外的光谱带逐渐增强了图像上的特征检测,并增加了在异质海洋生态系统中描绘目标特征的潜力。使用基于规则的分类技术提取目标特征,基于分割后的光谱特征,总体准确率为 83.9%,kappa 系数为 69.8%。使用附加光谱带可提高牡蛎礁栖息地测绘的光谱分辨率。高空间尺度监测和测绘浑浊的潮间带岩石礁带来了独特的挑战,但这些挑战可以通过在理想的气象和海洋条件下使用 RPAS 进行瞄准飞行来缓解。
简要介绍一下电磁波谱 (EMS) 可以为解释 EW 系统在现代战争中的作用铺平道路。毫不奇怪,从手机到简单的电视遥控器,我们日常生活中的许多设备都使用 EMS。什么是电磁波谱 1 ?基本上,EMS 可以定义为在特定频率范围和波长内以光速传播的电磁波。下图 1 中可以看到 EMS 的频率和波长的全部范围。2 EMS 频率和波长部分的顶部属于伽马射线和 X 射线,由于其高能光子和非常小的波长(λ=10-10 厘米)的性质,它们常用于医学领域(医学成像)和核物理。在 X 射线之后,我们可以看到 EMS 的紫外线和红外光部分。这种 EMS 大部分是人眼看不见的,但只有在这个频谱的一小部分中,人类和大多数动物才能看到电磁波。红外摄像机(用于检测物体的热图像)也在 EM 频谱的这一部分工作。EMS 场的 1-300 GHz 频率(100 米-0.5 毫米波长)频谱主要用于军事应用、气象观测和导航辅助目的的各种雷达系统。EMS 范围的底部主要用于无线电通信和电视