热湿压缩空气进入空气对空气热交换器 (1),在此被离开干燥器的干燥空气预冷。制冷剂压缩机 (3) 压缩制冷剂气体并将其推过冷凝器 (4),在此将其冷凝为高压液体。然后,制冷剂液体通过毛细管/校准孔 (5),以低压液体的形式计量进入蒸发器 (2)。微处理器通过“脉冲”控制电磁阀 (6) 的打开和关闭,使工作周期适应实际工作条件。在部分负荷条件下,只有一小部分制冷剂通过电磁阀 (7) 的校准孔口流向压缩机,因此消耗的能量较少。预冷空气进入蒸发器 (2),在那里被进入的制冷剂液体冷却到所需的露点,制冷剂液体改变相态并变成低压气体,适合在返回制冷剂压缩机 (3) 的吸入侧时继续该过程。然后,离开的冷干压缩空气返回到空气对空气热交换器 (1),在那里被进入的空气重新加热,以防止设备出汗。
热湿压缩空气进入空气对空气热交换器 (1),在此由离开干燥器的干燥空气进行预冷却。制冷剂压缩机 (3) 压缩制冷剂气体并将其推过冷凝器 (4),在此将其冷凝为高压液体。然后,制冷剂液体通过毛细管/校准孔 (5),以低压液体形式计量进入蒸发器 (2)。微处理器通过“脉冲”控制电磁阀 (6) 的打开和关闭,使工作周期适应实际工作条件。在部分负荷条件下,只有一小部分制冷剂通过电磁阀 (7) 的校准孔口流向压缩机,因此消耗的能量较少。预冷空气进入蒸发器 (2),在那里被进入的制冷剂液体冷却到所需的露点,制冷剂液体改变相态并变成低压气体,适合在返回制冷剂压缩机 (3) 的吸入侧时继续该过程。然后,离开的冷干压缩空气返回到空对空热交换器 (1),在那里被进入的空气重新加热,以防止设备出汗。
当您与运动和控制技术领域的全球领导者合作时,您将推动您的业务和世界向前发展。从微型电磁阀到高度集成的自动化系统,我们的创新对于用于药物研发和病原体检测的救生医疗设备和科学仪器至关重要。更不用说,对于缩短上市时间和降低您的总体拥有成本也至关重要。因此,与 Parker 合作,准备好迎接一切挑战吧。
DASH 2 先导辅助电磁阀 ................................ 20-27 剖面图 .............................................................. 20 电气连接器选项 .............................................. 20,23 温度范围 .............................................................. 22 材料 .............................................................................. 22 压力范围 .............................................................................. 22 过滤 .............................................................................. 22 零件编号选择指南 ............................................................. 23 流量曲线 ............................................................................. 23 底板 ............................................................................. 26 歧管 ............................................................................. 27 DASH 2 空气先导 .............................................................24-27 剖面图 ............................................................................. 24 零件编号选择指南 ............................................................. 25 过滤 ............................................................................. 25 材料 ............................................................................. 25 温度范围 ............................................................................. 25 底板 ............................................................................. 26 歧管 ............................................................................. 27
EPP3 系列是一系列带有闭环集成电子控制的电动遥控气动压力调节器。它可以根据电控制信号按比例调节出口压力。EPP3 调节器包括一个传统的伺服操作气动压力调节器,其中先导室由两个脉冲宽度调制的 2 通电磁阀中的一个或另一个供给。压力传感器测量调节器的出口压力并向放大器提供反馈信号。控制信号和反馈信号之间的任何差异都会转换为数字信号,以激励一个或另一个 2 通阀的线圈,以校正调节器的位置。控制信号可以是电压 (0 - 10V) 或电流 (4 - 20 mA)。“填充阀”的入口直接连接到调节器的主入口 P;通电后,该阀将填充伺服腔,以增加调节器出口 A 处的压力。当另一个“排气阀”通电时(调节器出口 A 处的压力降低),伺服腔的压力将通过位于盖子和主体之间的排放孔排出,并直接排入大气,无需消音器。主要调节压力的排放将通过快速排气 R 进行。建议使用传统消音器。两个电磁阀都确保伺服腔的填充或排空,以增加或减少调节器出口的压力。在阀门的静止位置,所有端口都被阻塞。
当制冷系统中的不凝性气体含量正常时,应将清洗器设置为自动操作模式。APM 的微处理器电子设备使用其“逻辑”来定位不凝性气体并花费更多时间清洗这些点。清洗器将给第一个启用的清洗点电磁阀通电(参见第 7 页,清洗点启用开关)。如果 10 分钟后不释放不凝性气体,则清洗器将前进到下一个启用的清洗点。如果在前 10 分钟内在任何清洗点释放不凝性气体,则清洗器将继续处理气体并保持在该清洗点 10 分钟,只要在这 10 分钟的时间段内释放不凝性气体。此“智能”功能最多可持续 30 分钟。30 分钟后,无论是否释放不凝性气体,清洗器都将进入下一个活动清洗点。一旦非冷凝性气体被最小化,并且所有启用的吹扫点循环而不释放非冷凝性气体,吹扫器将进入“待机”模式两小时(待机吹扫器状态灯将亮起),并且不会通电任何吹扫点电磁阀。待机两小时后,吹扫器将恢复运行,以找出可能已收集的非冷凝性气体。
KRONOS 40 系统可安装在预燃室燃气发动机的速度/负载控制系统中。KRONOS 40 基于 MEGASOL 燃气喷射阀和成熟的 DARDANOS 电磁阀控制,可执行速度/负载控制以及燃气阀控制。阀门和控制装置类型的范围意味着该系统具有高度灵活性,可以适应不同的发动机尺寸、气缸配置和功能。集成的废气温度传感可实现所有气缸的精确定时及其监控。这意味着发动机以高效率、低排放和保护发动机部件的方式实现最佳运行。附加传感器技术可以进一步增强这些功能。
Keywords: BP neural network, fuzzy control, cutting platform height, multisensor ABSTRACT In this paper, BP neural network is used to collect header height, AMEsim is used to simulate and analyze header height adjustment hydraulic system, and fuzzy PID control is used to adjust header lifting hydraulic cylinder to stabilize header height. The experimental results of harvesting different crops show that under the header height automatic control system, the error between the actual height of crop harvesting and the set height is within 15 mm, and the harvesting effect is good, which can meet the automatic regulation requirements of the header height of the multi crop combine harvester. 摘要 为了提高调节的精度,采用 BP 神经网络多传感器融合处理技术采集割台实时高度,通过 AMEsim 软件对割台 高度调节液压系统进行仿真分析,最后采用模糊 PID 控制比例电磁阀调节割台升降液压缸从而稳定割台高度。 通过收获油菜、谷子和水稻的试验结果证明:在割台高度自动控制系统下,作物收获的实际高度与设定高度误
1.介绍 BY EPCON 是一种数字式电动气动控制器,用于控制压力、温度、液位等过程变量。它提供所有最新的数字电子控制功能,同时具有气动控制器的可靠性。BY EPCON 由几个主要部分组成,包括数字信号处理器、用于程序/数据存储的闪存 ROM、LCD 显示器、信号处理和看门狗电路、数字信号滤波器、A/D 转换器、控制按钮、RS232C 通信接口(可选)、一对电磁阀及其驱动单元、信号输入/输出端子等。采用 PID 控制算法作为控制软件。BY EPCON 在 110~220V AC(50/60 Hz)或 24V DC 电源下运行。它接受来自标准 4~20 mA 变送器的信号,并提供气动输出以操作隔膜或活塞驱动的控制阀。控制器可容纳最大 60 psig 的输出,以控制气动隔膜或活塞式执行器,而无需使用 I/P 传感器或阀门定位器。BY EPCON 拥有自己的 24 伏直流电源供变送器使用,简化了电源的复杂性并降低了成本。BY EPCON 采用电磁阀代替易受污垢或磨损的小孔径孔口,在高达 60 psig 的压力下提供大量空气输出,以直接操作单作用或双作用气动执行器。由于此功能,BY EPCON 无需使用 I/P 传感器和阀门定位器,从而降低了成本。