众所周知,地面宇宙辐射 (TCR) 会导致硅和碳化硅功率器件中发生电离事件,从而导致灾难性的后果 [1]。因此,功率器件的设计和可靠运行需要准确表征电荷沉积和收集过程。目前,量化功率器件对 TCR 的敏感性最常见、最快速的技术是基于粒子加速器中的高能粒子辐照 [2]。由于这些测试是在高加速条件下进行的,因此转换到真实的 TCR 环境并不总是很简单。在本文中,我们提出了一种实验装置,用于监测半导体功率器件中由电离辐射产生的非破坏性单电离事件的发生,以收集有关电荷产生和收集过程的精确统计数据。谱测量系统的设计方式使其可以部署在大量实验配置中,其中收集的电荷、计数率和 DUT 的额定电压可能会有很大变化。具体来说,光谱仪需要记录器件中产生的每个电离事件,这些事件的电荷脉冲范围从 1 fC 到 2 pC,以及其时间戳和波形。该系统需要处理高压器件(额定电压高达 3.5 kV),尽量减少偏置纹波和电压随时间漂移。为了提高收集数据的统计意义,需要并行测试器件。因此,系统必须对大输入电容(高达 2 nF)保持稳定,并为大输入电容提供准确的结果
摘要:金属蛋白锌无处不在,具有结构和功能重要性的蛋白质锌中心,涉及与配体和底物的相互作用,并且通常具有药理意义。生物分子模拟在研究蛋白质结构,动力学,配体相互作用和催化的研究中越来越突出,但是锌构成了一个特殊的挑战,部分原因是它具有多功能,灵活的协调。生成生物锌中心配体配合物的可靠模型的计算工作流程将发现广泛的应用。在这里,我们使用(非键)分子力学(MM)和量子力学/分子力学(QM/ mm)在半词性(DFTB3)(DFTB3)和理论的密度功能理论(DFTB3)和理论水平来描述六二键式岩构成六氧化锌的锌层中心的理论水平,以评估替代处理的能力。 (单核和二核),以及相互作用组的性质(特别是锌 - 硫相互作用的存在)。mM分子动力学(MD)模拟可以过度影响八面体的几何形状,将其他水分子引入锌配位壳,但可以通过随后的半经验(DFTB3)QM/MM MM MM MD MD MD模拟来纠正。b3lyp/mm几何优化进一步提高了协调距离描述的准确性,该方法的总体有效性取决于包括锌的存在 - 硫 - 硫相互作用,而硫 - 硫相互作用的描述较少。我们描述了使用DFTB3的QM/MM MD的工作流程,然后使用DFT(例如B3Lyp)进行QM/MM几何形状优化,很好地描述了我们的锌金属酶复合物集合,并且很可能适合在结构信息的准确模型中创建锌蛋白质复合物的准确模型。
物质的光电离是本质上最快的电子过程之一。通过ATTSOND计量学成为可能的光离子化动力学测量。然而,迄今为止报告的所有实验都包含一个不可避免的测量诱导的贡献,称为Continuum-Continuum(CC)或库仑激光耦合延迟。在传统的Attosond计量学中,这种贡献对于大多数系统而言是无addive的。在这里,我们介绍了镜像对称性 - 破碎的attsond干扰物的概念,该干涉能够直接和独立地测量天然的单光子电离延迟和CC延迟。我们的技术解决了实验隔离这两种贡献的长期挑战。此进步为下一代准确的测量和精确测试打开了大门,该测试将设定标准,以基准测试电子结构和电子动力学方法的准确性。
在消除时期(EOR)不同阶段,由中性氢(HI)发出的21-CM辐射中的波动有望高度非高斯。非高斯性的程度随电离来源,IgM的状态和IGM中基本的物理过程的性质而变化。可以从EOR的无线电干涉测量值中估算的至关重要的可观察统计量之一,该观察值可以量化信号中存在的非高斯性的统计量是21 cm Biseptrum。在这项工作中,我们考虑了不同的回离场景,这些场景因电离光子的数量与宿主光晕质量和光子的休息框架分布而有所不同。这些变化有望导致IGM 21-CM拓扑的显着差异。我们分析了21厘米双谱对所有独特的K-Triangles中这些不同的电离场景的影响。我们的发现表明,21厘米双光谱的形状,符号和大小相结合在区分不同的回离场景方面优于功率谱。此外,我们发现,挤压限制双光谱的标志变化是HI分布的独特示踪剂,并在电离期间捕获了两个不断的拓扑转换。这些结果突出了使用21 cm双光谱来限制不同回离模型的潜力。
使用多层结构实现了空气中正极表面等离子体在空气中的均匀传播,该结构由硅晶片组成,由1 µm厚的介电SiO 2层作为传播表面覆盖。而不是在使用常规散装电介质表面时在相同条件下观察到的分支流媒体,该等离子体表现出具有高度可重复性和稳定性的同质环形结构。血浆是通过在接触介电表面的钨电线上施加纳秒正脉冲来产生的。血浆以高空间分辨率进行单射击操作成像,紫外反射显微镜以及快速加强的电荷耦合耦合器件摄像头。时间和空间分辨的光学发射光谱表明,均匀的环对应于具有高N 2 + *发射区域的电离前端的传播。我们讨论了环形电离波的起源,考虑到Si-Sio 2界面的作用以及外部光源照明的效果。环电离波可能是由于分支抑制作用而导致的,这是由于在血浆发出的光子产生的界面处的光电效应。在大气压力下的环境空气中,稳定均匀的表面电离波的产生可能引起进一步的晚期等离子表面相互作用研究或流动控制应用。
1个大学。Lille, CNRS, Centrale Lille, UMR 9189-Cristal-Center for Research in Computer Science, Signal and Automatic, F-59000 Lille, France 2 University Paris-Saclay, CNRS, CEA, Institut de Physique Th´Eorerique, 91191, Gif-sur-Yvette, France 3 Univ Lyon, Ens de Lyon, University Claude Bernard Lyon 1, CNRS De Physique(UMR 5672),F-69342 Lyon,法国4 Qube Research and Technologies,75008 Paris,France 5 Univ。Lille,CNRS,UMR 8523-Phlam-phlam-lasers,Atoms and Mol´écules,F-59000 Lille,法国6号ALTO大学应用物理系,00076 AALTO,AALTO,芬兰7 Sorbonne University 7 Sorbonne University 7 Sorbonne University,理论实验室和高级Enigh Enightoration and High Enigh Encorgies,cnres and High Enighs umr 7559999999999。 Jussieu,Tour 13,5eme’iTage,75252 Paris 05,法国8大学。巴黎 - 萨克莱,CNRS,Optique Institute研究生院
分子发现的复杂性需要有效地播放庞大而未知的化学空间的自主系统。虽然将人工智能(AI)与16个机器人自动化相结合已加速发现,但其应用程序仍在稀有历史数据的领域17中受到限制。一个这样的挑战是脂质纳米颗粒(LNP)的设计,用于18个mRNA传递,它依赖于专家驱动的设计,并受到有限数据集的阻碍。19在这里,我们介绍了一种自动驾驶实验室(SDL)系统Lumi-LAB,该系统通过将分子基础模型与自动化的21个主动学习实验工作流相结合,从而可以使用最小的湿LAB数据进行有效的学习20。通过十个迭代循环,Lumi-LAB合成22,并评估了1,700多种LNP,与临床认可的基准相比,人支气管细胞中具有优质mRNA转染的可离子脂质23人支气管细胞的效力。出乎意料的是,24个自主透露的溴化脂质尾巴是一种新型功能,从而增强了mRNA递送。25体内验证进一步证实,含有表现最佳的26个脂质Lumi-6的LNP在鼠模型中的肺上皮细胞中的基因编辑功效达到20.3%,27个在我们的知识中,在鼠类模型中27次超过了吸入的LNP介导的CRISPR-Cas9递送28的LNP LNP介导的CRISPR-CAS9递送的效率最高。这些发现证明了Lumi-LAB是一个强大的,数据效率的29平台,用于推进mRNA传递,强调了AI驱动的自主30系统在材料科学和治疗发现中加速创新的潜力。31
摘要 - 物联网(IoT)设备的使用已通过许多不同的领域传播。农业的运输,健康和能源管理是使用物联网系统的一些领域。对物联网系统的无线通信技术的选择对于其最佳性能至关重要。但是,必须考虑此选择的因素,例如所需的覆盖范围或能源消耗。在本文中,已经执行了使用低成本物联网设备的WiFi和Lora低功率广泛区域网络(LPWAN)传输后确定可获得的电池寿命。具有5秒的传输间隔和默认设置,WiFi和Lora都获得了类似的结果。此外,WiFi的表现优于默认设置和30秒的传输间隔。最后,洛拉(Lora)在更改的设置变化时确实跑赢了wifi,因为洛拉(Lora)的传输功率为10 dbm。
在预测恒星的演化和死亡方面,恒星进化模型的最新进展。我们提出了使用更新的P ARSEC v2.0代码计算的新的恒星进化模型,以获得金属和初始质量的全面和均匀的网格。核反应网络,质量损失处方和元素混合的处理都在P ARSEC v2.0中进行了更新。我们计算了跨越Z = 10-11至Z = 0的13个初始金属性的模型。03,质量范围从2.0m⊙到2000 m,由1100多个库(包括纯模型在内的2100个轨道)组成。对于每条轨道,从预先序列到最先进的早期抗肌肉分支或苏植物前阶段(取决于恒星质量)的进化。在这里,我们描述了轨道的特性及其化学和结构进化。我们计算了最终的命运和残余物质,并为每种金属性建立了质谱,发现合并的黑洞(BH)配对质量质量间隙仅在100至130 m⊙之间。此外,残留质量提供了与观察到的BH质量一致的模型,例如GW190521,Cygnus X-1和Gaia BH3二进制系统的BH质量。我们计算并提供了从恒星风和爆炸性最终命运以及电离光子速率的化学喷射。我们展示了金属性如何影响这些恒星的进化,命运,喷射和电离光子计数。所有模型均可公开可用,可以在P ARSEC数据库中检索。我们的结果表明,与不同代码计算的其他轨道的总体一致性很强,由于混合和质量损失的不同处理,对于非常巨大的恒星(M Zams> 120m⊙)而出现了最显着的差异。与大型麦哲伦云的狼蛛星云中观察到的大量恒星样本的比较表明,我们的轨道很好地重现了主要序列上的大多数恒星。
1 ITM Physics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, United States, 2 Space Sciences Division, US Naval Research Laboratory, Washington, DC, United States, 3 Université Paris Cité, Institut de physique du globe de Paris (IPGP), Paris, France, 4 Institute of Astronomy Astrophysics Space Applications and Remote Sensing, National Observatory of Athens, Athens,希腊,五物理系,联邦联邦De Campina Grande大学,巴西,巴西,6物理与工程系,斯克兰顿大学,宾夕法尼亚州斯克兰顿大学,美国宾夕法尼亚州斯克兰顿大学,7个空间 - 毕业士环境研究所,纳戈亚大学,日本纳戈亚,日本纳戈亚,日本,日本,8个Syntek Techneries Inc.,Fairfax,Fairfax,va。克莱姆森大学物理与天文学,美国南卡罗来纳州克莱姆森大学,美国11号工艺艺术与科学学院,克里亚大学,印度斯里市,莱布尼兹物理研究所12号,罗斯托克大学,德国罗斯托克大学,德国罗斯托克大学,13