量子卷积神经网络(QCNN)代表量子机学习中的一种有希望的方法,为量子和经典数据分析铺平了新方向。由于缺乏贫瘠的高原问题,训练量子神经网络(QNN)及其可行性,这种方法特别有吸引力。但是,将QCNN应用于经典数据时会产生一个限制。当输入量子数的数量为两个功率时,网络体系结构是最自然的,因为每个池层中的数量减少了两个倍。输入量子位的数量确定可以处理的输入数据的尺寸(即功能数量),从而限制了QCNN算法对现实世界数据的适用性。为了解决此问题,我们提出了一个QCNN体系结构,能够处理任意输入数据尺寸,同时优化量子资源(例如辅助量子器和量子门)的分配。这种优化不仅对于最大程度地减少计算资源很重要,而且在嘈杂的中间量子量子(NISQ)计算中至关重要,因为可以可靠地执行的量子电路的大小是有限的。通过数值模拟,我们基准了具有任意输入数据维度的多个数据集的各种QCNN体系结构的分类性能,包括MNIST,Landsat卫星,时尚 - 纳斯特和电离层。结果验证了提出的QCNN体系结构在利用最小资源开销的同时实现了出色的分类性能,当可靠的量子计算受噪声和缺陷限制时,提供了最佳解决方案。
DrACO 复杂有机物采集钻探 DraMS 蜻蜓质谱仪 DSL 深空物流 EGS 探索地面系统 EIS 欧罗巴成像系统 EPFD 电动动力系统飞行演示 ESA 欧洲航天局 ESM 欧洲服务舱 ESPRIT-RM 欧洲加油、基础设施和电信系统 加油舱 EUS 探索上面级 GERS 网关外部机器人系统 GRNS 伽马射线和中子光谱仪 GSLV 地球同步卫星运载火箭 HALO 居住和物流前哨 HLS 载人着陆系统 i-Hab 国际栖息地 I&T 集成和测试 ICON 电离层连接探测器 ICPS 临时低温推进级 IMAP 星际测绘和加速探测器 IOC 初始运行能力 ISRO 印度空间研究组织 ISS 国际空间站 JAXA 日本宇宙航空研究开发机构 JCL 联合成本和进度置信水平 JWST 詹姆斯·韦伯太空望远镜 KaRIn Ka 波段雷达干涉仪KASI 韩国天文与空间科学研究所 KDP 关键决策点 L9 Landsat 9 LBFD 低空飞行演示器 LCRD 激光通信中继演示 LICIACube Light 意大利立方体卫星(用于小行星成像) LIDAR 光探测与测距 MASPEX 行星探测质谱仪 MDR 任务定义审查 MISE 测绘成像光谱仪(用于木卫二) ML2 移动发射器 2 MPM 多用途模块 NASA 美国国家航空航天局 NE
DraMS 蜻蜓质谱仪 DSL 深空物流 EAP 电动飞机推进系统 EGS 探索地面系统 EIS 木卫二成像系统 EMI 电磁干扰 EPFD 电动动力系统飞行演示 ESA 欧洲航天局 ESM 欧洲服务舱 ESPRIT-RM 欧洲加油、基础设施和电信系统 加油舱 EUS 探索上面级 EVA 舱外活动 GDC 地球空间动力学星座 GERS 网关外部机器人系统 HALO 居住和物流前哨 HLS 载人着陆系统 I-HAB 国际栖息地 ICPS 临时低温推进级 IMAP 星际测绘和加速探测器 ISRO 印度空间研究组织 ISS 国际空间站 IT 电离层-热层 JPL 喷气推进实验室 JWST 詹姆斯·韦伯太空望远镜 KDP 关键决策点 LBFD 低爆飞行演示器 LCRD 激光通信中继演示 MASPEX 行星探索质谱仪 MAV火星上升飞行器 MDR 任务定义审查 ML2 移动发射器 2 MSR 火星样本返回 NASA 美国国家航空航天局 NEO 近地天体 NEOCam NEO 相机 NISAR NASA ISRO – 合成孔径雷达 NPR NASA 程序要求 OCI 海洋颜色仪 OMB 管理和预算办公室 Orion Orion 多用途载人飞船 ORR 作战准备情况审查
主题代码:PH-xxx 课程名称:自旋电子技术简介 LTP:3-0-0 学分:3 主题领域:OEC 大纲:磁学基础知识:磁学类型、自旋轨道相互作用、偶极相互作用、交换相互作用、磁各向异性 自旋相关传输:异常霍尔效应、各向异性磁阻 (AMR)、巨磁阻 (GMR)、隧道磁阻 (TMR)、自旋阀 (SV)、磁隧道结 (MTJ)、磁场传感器(硬盘读取头、生物传感器) 磁化动力学:自旋转移扭矩 (STT)、自旋霍尔效应 (SHE)、自旋轨道扭矩 (SOT)、轨道霍尔效应 (OHE)、磁化切换、磁性 skyrmions 自旋电子器件:磁阻随机存取存储器 (MRAM) 技术 - STT-MRAM、SOT-MRAM、自旋扭矩和自旋霍尔纳米振荡器(STNO 和 SHNO)、自旋量热器、赛道存储器基于自旋的计算:纳米磁逻辑、自旋逻辑、基于振荡器的神经形态计算、自旋波计算。科目代码:PH-xxx 课程名称:太空探索 LTP:3-0-0 学分:3 学科领域:OEC 大纲:不同国家太空探索的历史、对太空技术的需求、对空间科学知识的需求、近地空间的等离子体、大气中的波、其他行星的大气/电离层、空间测量:主动和被动遥感和现场测量、轨道:开普勒行星运动定律、轨道类型、霍曼转移轨道、卫星通信和导航、空间技术的应用。
空间物理社区成员在美国太阳物理学十年调查过程中投入了大量精力和想法,撰写了白皮书,对空间物理研究工作的现状进行了全面分析,并评估了未来研究、任务计划和资金的重点。与此同时,欧洲和美国的空间物理社区成员最近也投入了大量精力和想法,撰写了《愿景 2050》和《太阳物理学 2050》的论文。社区中还有其他关于未来空间物理研究工作需求和重点的想法。考虑到这一点,创建了天文学和空间科学前沿研究主题“空间物理学的未来 2022”,以提供一种格式,用于收集来自世界各地的这些想法,以供参考、存档和访问。这些想法现在可供研究界使用。该研究主题包含有关空间物理学领域关键主题的高质量同行评审文章,这些文章突出了该领域的最新进展,同时强调了未来研究的重要方向和新可能性。本研究主题包括 64 篇出版物,本文将简要介绍这些出版物。这些出版物涉及各种各样的空间物理主题,从太阳到外日光层,包括磁层和电离层。64 篇文章的描述分为以下七段,涉及 1) 未解决的问题、2) 新的研究途径、3) 所需的仪器和新方法、4) 新太空任务的概念、5) 发展包括多样性在内的太空社区、6) 数据科学和未来的计算机模拟,以及 7) 公民科学。
教学大纲 第一单元:通信卫星:轨道和描述:卫星通信简史、卫星频段、卫星系统、应用、轨道周期和速度、轨道倾角的影响、方位角和仰角、覆盖范围和斜距、日食、轨道摄动、卫星在地球静止轨道上的位置。 第二单元:卫星子系统:高度和轨道控制系统、TT&C 子系统、高度控制子系统、电源系统、通信子系统、卫星天线设备。 卫星链路:基本传输理论、系统噪声温度和 G/T 比、基本链路分析、干扰分析、指定 C/N 的卫星链路设计(有和没有频率重用)、链路预算。第三单元:传播效应:介绍、大气吸收、云衰减、对流层和电离层闪烁和低角度衰落、雨致衰减、雨致交叉极化干扰。多址:频分多址 (FDMA)、互调、C/N 计算。时分多址 (TDMA)、帧结构、突发结构、卫星交换 TDMA 机载处理、需求分配多址 (DAMA) – 需求分配类型、特性、CDMA 扩频传输和接收第四单元:地面站技术:发射机、接收机、天线、跟踪系统、地面接口、功率测试方法、低轨道考虑。卫星导航和全球定位系统:无线电和卫星导航、GPS 定位原理、GPS 接收机、GPS C/A 码精度、差分 GPS。 UNIT-V:卫星分组通信:通过 FDMA 传输消息:M/G/1 队列、通过 TDMA 传输消息、纯 ALOHA-卫星分组交换、时隙 Aloha、分组预留、树算法。教科书:
背景。众所周知,彗星的电离层会通过质量加载使太阳风偏转,但这种相互作用取决于彗星活动。我们使用罗塞塔离子成分分析仪研究了 67P 彗星上这一过程的细节。目的。本研究旨在比较罗塞塔号任务中两个不同时间段内太阳风和彗星离子的相互作用。方法。我们比较了两天(相隔四个月)的积分离子矩(密度、速度和动量通量)和速度分布函数。将速度分布函数投影到依赖于磁场方向的坐标系中,并在三个小时内取平均值。结果。第一种情况显示 H + 在离子矩和速度分布函数中都高度分散。He 2 + 离子有些分散,但分散程度较低,看起来更像 H 2 O + 拾取离子。第二种情况显示出质量加载的典型证据,其中太阳风物种发生偏转,但速度分布函数没有显著变化。结论。与 He 2 + 和 H 2 O + 拾取离子相比,第一种情况下的 H + 分布表明在 H + 回旋半径尺度上存在狭窄的彗星鞘。因此,具有较大回旋半径的 He 2 + 和 H 2 O + 大多能够穿过该彗星鞘。对动量通量张量的检查表明,第一种情况下的所有物种都具有显著的非回旋动量通量分量,该分量高于第二种质量加载情况。质量加载不能充分解释第一种情况下的分布函数和动量通量张量,因此我们假设这是弓形激波形成的证据。
课程概述 MSc 课程包含 90 ECTS 学分。学生必须完成 8 个核心模块和 4 个选修模块以及一个实习模块。如果核心模块或选修模块与学生之前的学习有很大重叠,则可以不选择。核心模块如下所示。选修模块可以从 UCD 中的任何现有模块中选择,但需与课程主任协商。 核心模块 空间环境(PHYC 40660,5 ECTS,第 1 学期) 模块描述 向学生提供空间环境的概述,分为以下五个部分:真空环境(地球场、太阳-行星连接);中性环境(大气物理学);等离子体环境(电离层、磁层、地磁风暴);辐射环境(捕获辐射带、太阳质子事件、银河宇宙射线);和微流星体/轨道碎片环境(经验模型)。还讨论了与航天器设计相关的其他问题,例如不同卫星轨道的显著特征及其在一系列太空应用(例如地球观测、通信、导航、行星科学、天体物理学和宇宙学)中的用途。主要航天国家现有和计划中的运载火箭的能力、火箭推进的基本原理、振动控制和航天器平台也得到了发展。学习成果完成本课程后,学生应能够:• 比较和对比地球和太空环境;• 确定太空环境对卫星的主要影响;• 为特定的太空应用构建合适的轨道;• 解决相关领域的定量问题;• 将基本物理原理应用于火箭推进和运载火箭的选择• 确定火箭发动机设计和开发的基础• 量化火箭发动机的关键性能参数
在过去十年中,地球磁层中的航天器测量到的静电电位高达数十 kV 量级。太空观测结果显示太阳系中的自然物体也存在巨大电位。静电放电可能对航天器造成物质损坏和操作干扰。尘埃等自然物体可能受到干扰,其运动受到电磁力的影响。太空中物体的电位由各种充电电流之间的平衡决定。最重要的是等离子体粒子的电荷转移、光电发射和二次电子发射,有时其他充电机制也会起作用。物体的电荷和运动以及局部磁场和电场都会影响电流。电介质表面可能具有表面电位梯度,这可以通过产生势垒来影响电流平衡。这些过程针对太阳系和星际空间中的物体进行了评估。预期的平衡电位范围从电离层的负几十分之一伏到安静磁层和行星际空间的正几伏。然而,在热等离子体(如受扰磁层)中,尤其是在阴影表面上,可能会出现较大的负电位。星际空间中的电位可以是正的也可以是负的,这取决于当地辐射场和等离子体的特性。在已测量过航天器电位的地区,结果通常与这些预期一致。偏差可以归因于偏置或介电表面的影响,或天线等大型结构中的磁感应效应。已经开展了深入的研究工作,以测量材料特性、研究充电和放电过程、将电流平衡建模为真实的航天器配置,并获取太空中的更多数据。已经使用被动方法(例如仔细选择表面材料)和主动方法(例如发射带电粒子束)进行了航天器电位控制实验。该评论最后对充电效应可能发挥重要作用的天体物理应用进行了调查。
航空航天环境是 RSESS 重点领域的核心课程,旨在向您介绍近地空间环境及其对航天器、通信系统、宇航员等的影响。从事空间技术或应用的航空航天工程师需要对环境有广泛的了解,以便适当地设计他们的航天器。但更一般地说,任何对太空充满热情的人都会对了解太空环境的不同区域、它们如何相互耦合和影响以及它们如何影响我们的日常生活感兴趣。我们将“近地”空间环境定义为受太阳影响的环绕地球的空间区域,也是我们大多数卫星运行的地方。因此,本课程重点介绍环绕地球的空间环境——不要指望了解太阳系、星系、行星际空间等。但是,我们将研究其他行星周围的环境,以便与地球进行比较,例如“近木星”空间环境。近地空间环境从地球表面一直延伸到弓形激波,弓形激波是磁层的外边界。在这个环境中,有不同的重叠区域:由中性分子和原子组成的大气层;电离层,大气中的气体被电离;等离子层,气体完全电离并被困在地球磁场中;以及辐射带,其中包含高能电子和质子。这些区域受到地球磁场的影响,而该磁场占主导地位的区域称为磁层。磁层内有不同种类的粒子、不同的电流以及各种复杂的等离子体和电磁波。此外,环境中还包含我们太阳系中的尘埃和流星体,以及我们直接负责的航天器和轨道碎片。在本课程中,我们将了解每个区域、它们存在的原因以及它们对航天器、宇航员和社会各个方面产生的积极和消极影响。它们对航天器和宇航员有电和辐射影响;对 GPS 和其他航天器的通信信号有影响;磁场扰动对地面有影响;尘埃和流星体对航天器有影响;等等。本课程分为多个模块,涵盖太空环境的每个区域,每个模块大约持续两周。在每个模块中,将阅读指定