鉴于人们日益认识到可追溯性国家标准对测量质量保证的重要性,本目录中的条目分为三类。第一类包括 NPL 作为英国主要标准实验室所提供的服务:这些服务受 NPL 内部质量体系的约束,并且可自动追溯,在许多情况下,这些服务使用与主要测量相同的设备提供。第二类包括母实验室已成功获得 UKAS(英国认证服务机构)认可的服务:这些服务同样可追溯至国家标准,并受严格的内部质量体系约束。第三类包括其他服务,这些服务目前尚缺乏可追溯性,或者提供的可追溯性不太正式。
用纤维胶加固的聚合物在家庭行业的转换中变得越来越普遍。这些化合物对撞击和目前使用的湿度吸收具有良好的抗拉力抵抗力,并且在引擎盖下方的一部分,尤其是在散热器框架下的汽车行业中。这项工作的目的是研究用纤维类增强的电离辐射对聚酰胺6的性质的影响,并接受了不同的照射剂量。样品被制备并在JOB 188加速器上进行辐照,其电子束能量为1.5 meV,空气中的剂量不同,剂量率为27.99 kgy/h。之后,评估了非辐照和辐照的聚酰胺6中使用纤维类加固的特性。r 2007 Elsevier Ltd.保留所有权利。
密歇根大学提议系统地评估氘化过程中过量产热的说法,并将其与核反应和化学反应产物联系起来。该团队计划结合基于闪烁的中子和伽马射线探测器、质谱仪、能够对产热进行微瓦分辨率测量的量热仪以及从头计算方法。拟议的研究将通过实验和理论探索过量产热和 LENR 的起源和机制。
可以在我们的网站上找到有关我们如何进行电离辐射(医疗暴露)法规检查的完整详细信息。医疗保健监察局威尔士(HIW)于2024年10月16日在威尔士大学医院,加的夫大学医院,加的夫大学医院和瓦尔大学卫生委员会的核医学部和医疗物理部非临时服务进行了电离辐射(医疗暴露)法规检查。在检查期间,我们研究了该部门如何遵守法规并符合健康和护理质量标准。我们的检查团队由两名HIW高级医疗保健检查员,一名科学顾问(ARSAC)和英国卫生安全局(UKHSA)医疗暴露小组(MEG)的高级临床官(放射治疗)组成,他们以咨询能力的身份行事。检查由HIW高级医疗检查员领导。在检查期间,我们邀请患者或他们的护理人员填写问卷,向我们介绍他们使用服务的经验。我们还邀请员工填写问卷,以告诉我们他们对服务的看法。由患者或其护理人员完成了46份问卷,工作人员完成了14个问卷。反馈和我们收到的一些评论在整个报告中出现。在场时,本出版物中的引号可能是从其原始语言中翻译而来的。检查结果与进行检查的时间点有关。
使用 60CO 和 137CS γ 射线进行高能防护级空气比释动能校准的主要标准最初是为治疗级空气比释动能率测量而建造的。组成标准的腔室即将达到其工作寿命,需要在不久的将来更换。随着吸收剂量标准和基于它们的治疗级剂量率校准服务的引入,预计未来 5 年对使用 6OCO γ 射线进行治疗级空气比释动能校准的需求将减少。因此,似乎明智的做法是优化替代标准以测量防护级速率的空气比释动能,因为在可预见的未来似乎不太可能有对吸收剂量测量的需求。本报告研究了当前标准对防护级测量的适用性,并确定了在设计替代方案时需要考虑的领域。
简单总结:电离辐射会影响电子电路和生物,并且已成为医疗保健、采矿、航空电子、核能、高能物理和空间应用等各种关键应用的主要关注点。辐射传感器是估计、测量和表征辐射相关信息以评估系统性能并随后寻找纠正措施的重要工具。这篇评论文章概述了过去几十年来在半导体技术上开发的用于测量辐射水平及其对电子仪器影响的现代方法和设备。它还提到了未来有可能实现的新兴设备。本文详细讨论了基于半导体的传感设备中使用的各种技术,并说明了相关的应用领域。本文将引起读者和相关专业领域的专业人士在研究各种传感原理时的兴趣。
众所周知,地面宇宙辐射 (TCR) 会导致硅和碳化硅功率器件中发生电离事件,从而导致灾难性的后果 [1]。因此,功率器件的设计和可靠运行需要准确表征电荷沉积和收集过程。目前,量化功率器件对 TCR 的敏感性最常见、最快速的技术是基于粒子加速器中的高能粒子辐照 [2]。由于这些测试是在高加速条件下进行的,因此转换到真实的 TCR 环境并不总是很简单。在本文中,我们提出了一种实验装置,用于监测半导体功率器件中由电离辐射产生的非破坏性单电离事件的发生,以收集有关电荷产生和收集过程的精确统计数据。谱测量系统的设计方式使其可以部署在大量实验配置中,其中收集的电荷、计数率和 DUT 的额定电压可能会有很大变化。具体来说,光谱仪需要记录器件中产生的每个电离事件,这些事件的电荷脉冲范围从 1 fC 到 2 pC,以及其时间戳和波形。该系统需要处理高压器件(额定电压高达 3.5 kV),尽量减少偏置纹波和电压随时间漂移。为了提高收集数据的统计意义,需要并行测试器件。因此,系统必须对大输入电容(高达 2 nF)保持稳定,并为大输入电容提供准确的结果
放射疗法用于治疗约50%的所有人类癌症,这些癌症主要采用光子辐射。然而,由于更精确的剂量沉积和增加的线性递送转移(LET),颗粒放疗对常规光子具有显着益处,从而产生增强的治疗反应。具体而言,质子束疗法(PBT)和碳离子放疗(CIRT)的特征是Bragg峰,该峰会产生低入口辐射剂量,其中大多数能量沉积在一个小区域内定义,可以专门针对肿瘤,以低出口剂量为下降。PBT被认为相对较低,而CIRT则更密集地电离,因此较高的LET。尽管采用了放射疗法类型,但肿瘤细胞的杀伤仍依赖于引入DNA损伤,这使肿瘤细胞的修复能力淹没了。众所周知,DNA损伤的复杂性随着使生物学有效性增强而增加,尽管在不同的辐射源之后被激活的特定DNA修复途径尚不清楚。需要此知识来确定是否可以针对这些途径内的特定蛋白质和酶来进一步提高辐射的疗效。在这篇综述中,我们概述了对这些响应响应的辐射方式和DNA修复途径。我们还提供了研究研究和DNA损伤复杂性对DNA修复途径选择的影响的最新知识,其次是证据,证明了这些途径中的酶如何有可能被治疗中利用以进一步提高肿瘤放射效率,从而进一步提高放射治疗的功效。
本出版物实施了空军手册 (AFMAN) 48-148,电离辐射防护;AFMAN 40-201,放射性物质 (RAM) 管理;空军专业代码 4B051 生物环境工程师电离辐射指南;DAFMAN 48-125,人员电离辐射剂量测定;T.O.33B-1-1,无损检测方法,基本理论;AFI 48- 139,激光和光辐射防护计划;美国国家标准协会 Z136.1,激光的安全使用;AFI 48-109,电磁场辐射 (EMFR) 职业和环境健康计划;以及 ALARA(尽可能低的合理可行)概念,10 C.F.R.20.1003,针对麦康奈尔空军基地的电离辐射暴露(例如 RAM 或辐射产生装置 (RPD))。它为所有指挥官、辐射安全官 (RSO)、激光安全官 (LSO)、单位辐射安全官 (URSO)、承包办公室人员以及所有其他职责涉及潜在电离和非电离辐射暴露的人员提供指导。本出版物适用于国防部所有文职雇员和制服人员,其人员的职责涉及在可能发生电离和非电离辐射暴露的区域执行或监督工作。它还适用于未受职业暴露的人员(普通公众),只要它涉及控制措施以保护公众免受空军拥有和/或运营的电离和非电离辐射源的潜在危害。本指令不适用于医疗患者在诊断或治疗过程中的暴露,也不适用于人员在战斗中使用核武器或热核武器产生的电离辐射暴露。使用 AF 表格 847《出版物变更建议》将建议的变更和有关本出版物的问题提交给主要责任办公室 (OPR);通过适当的流程传递 AF 表格 847
简介 USF 研究操作需要使用 X 射线设备。X 射线用于分析样品、无损检测或诊断成像。USF 的 X 射线设备多年来一直安全运行。X 射线用户必须了解设备的危险并遵循设备的操作程序和/或用户手册说明。如果您对 USF 的 X 射线设备有任何疑问或担忧,请联系 USF RSO – Adam Weaver。辐射是以波或粒子形式存在的能量。能量高到足以引起电离的辐射称为电离辐射。它包括放射性物质、恒星和高压设备发出的粒子和射线。电离辐射包括 X 射线、伽马射线、β 粒子、α 粒子和中子。如果不使用监测设备,人类就无法“发现”电离辐射。与热、光、食物和噪音不同,人类无法看到、感觉、尝到、闻到或听到电离辐射。我们所有人所接触的背景辐射有两个来源:自然背景辐射和人造辐射。NCRP 报告第 93 号指出,美国的平均背景剂量为 360 mrem/年。